@article{JMAG_2019_15_2_a1,
author = {Andriy Bandura and Oleh Skaskiv},
title = {Analog of {Hayman's} theorem and its application to some system of linear partial differential equations},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {170--191},
year = {2019},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a1/}
}
TY - JOUR AU - Andriy Bandura AU - Oleh Skaskiv TI - Analog of Hayman's theorem and its application to some system of linear partial differential equations JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 170 EP - 191 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a1/ LA - en ID - JMAG_2019_15_2_a1 ER -
%0 Journal Article %A Andriy Bandura %A Oleh Skaskiv %T Analog of Hayman's theorem and its application to some system of linear partial differential equations %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2019 %P 170-191 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a1/ %G en %F JMAG_2019_15_2_a1
Andriy Bandura; Oleh Skaskiv. Analog of Hayman's theorem and its application to some system of linear partial differential equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 170-191. http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a1/
[1] A. Bandura, “New criteria of boundedness of $\mathbf{L}$-index in joint variables for entire functions”, Mat. Visn. Nauk. Tov. Shevchenka, 13 (2016), 58–67 (Ukrainian) | MR | Zbl
[2] A.I. Bandura, M.T. Bordulyak, O.B. Skaskiv, “Sufficient conditions of boundedness of L-index in joint variables”, Mat. Stud., 45:1 (2016), 12–26 | MR | Zbl
[3] A.I. Bandura, N.V. Petrechko, O.B. Skaskiv, “Analytic functions in a polydisc of bounded $\mathbf{L}$-index in joint variables”, Mat. Stud., 46:1 (2016), 72–80 | DOI | MR | Zbl
[4] A. Bandura, N. Petrechko, O. Skaskiv, “Maximum modulus in a bidisc of analytic functions of bounded $\mathbf{L}$-index and an analogue of Hayman's theorem”, Math. Bohem., 143:4 (2018), 339–354 | DOI | MR | Zbl
[5] A.I. Bandura, O.B. Skaskiv, “Entire functions of bounded $L$-index in direction”, Mat. Stud., 27:1 (2007), 30–52 (Ukrainian) | MR | Zbl
[6] A.I. Bandura, O.B. Skaskiv, “Sufficient sets for boundedness $L$-index in direction for entire functions”, Mat. Stud., 30:2 (2008), 177–182 | MR | Zbl
[7] A. Bandura, O. Skaskiv, Entire Functions of Several Variables of Bounded Index, Publisher I.E. Chyzhykov, Chyslo, Lviv, 2016
[8] J. Math. Sci. (N.Y.), 227:1 (2017), 1–12 | DOI | MR | Zbl
[9] A. Bandura, O. Skaskiv, Analytic Functions in the Unit Ball. Bounded $L$-Index in Joint Variables and Solutions of Systems of PDE's, LAP Lambert Academic Publishing, Beau–Bassin, 2017 | MR
[10] A. Bandura, O. Skaskiv, “Asymptotic estimates of entire functions of bounded $\mathbf{L}$-index in joint variables”, Novi Sad J. Math., 48:1 (2018), 103–116 | DOI | MR | Zbl
[11] A. Bandura, O. Skaskiv, P. Filevych, “Properties of entire solutions of some linear PDE's”, J. Appl. Math. Comput. Mech., 16:2 (2017), 17–28 | DOI | MR
[12] M.T. Bordulyak, “The space of entire in $\mathbb{C}^n$ functions of bounded $\mathbf{L}$-index”, Mat. Stud., 4 (1995), 53–58 (Ukrainian) | MR | Zbl
[13] M.T. Bordulyak, Boundedness of L-Index of Entire Functions of Several Complex Variables, Ph.D thesis, Lviv University, Lviv, 1995 (Ukrainian) | MR
[14] M.T. Bordulyak, “On the growth of entire solutions of linear differential equations”, Mat. Stud., 13:2 (2000), 219–223 | MR | Zbl
[15] M.T. Bordulyak, M.M. Sheremeta, “Boundedness of the $\mathbf{L}$-index of an entire function of several variables”, Dopov. Nats. Akad. Nauk Ukr., 1993, no. 9, 10–13 (Ukrainian) | MR
[16] B.C. Chakraborty, R. Chanda, “A class of entire functions of bounded index in several variables”, J. Pure Math., 12 (1995), 16–21 | MR | Zbl
[17] B.C. Chakraborty, T.K. Samanta, “On entire functions of bounded index in several variables”, J. Pure Math., 17 (2000), 53–71 | MR | Zbl
[18] B.C. Chakraborty, T.K. Samanta, “On entire functions of L-bounded index”, J. Pure Math., 18 (2001), 53–64 | MR | Zbl
[19] W.K. Hayman, “Differential inequalities and local valency”, Pacific J. Math., 44:1 (1973), 117–137 | DOI | MR | Zbl
[20] G.J. Krishna, S.M. Shah, “Functions of bounded indices in one and several complex variables”, Mathematical essays dedicated to A.J. Macintyre, Ohio Univ. Press, Athens–Ohio, 1970, 223–235 | MR
[21] V.O. Kushnir, “Analogue of Hayman theorem for analytic functions of bounded $l$-index”, Visn. Lviv Un-ty. Ser. Mekh. Math., 53 (1999), 48–51 (Ukrainian) | MR | Zbl
[22] B. Lepson, “Differential Equations of Infinite Order, Hyperdirichlet Series and Entire Functions of Bounded Index”, Entire Functions and Related Parts of Analysis (LaJolla, Calif., 1966), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 1968, 298–307 | DOI | MR
[23] F. Nuray, R.F. Patterson, “Entire bivariate functions of exponential type”, Bull. Math. Sci., 5:2 (2015), 171–177 | DOI | MR | Zbl
[24] F. Nuray, R.F. Patterson, “Multivalence of bivariate functions of bounded index”, Matematiche (Catania), 70:2 (2015), 225–233 | MR | Zbl
[25] Q.I. Rahman, J. Stankiewicz, “Differential inequalities and local valency”, Pacific J. Math., 54:2 (1974), 165–181 | DOI | MR | Zbl
[26] M. Salmassi, “Functions of bounded indices in several variables”, Indian J. Math., 31:3 (1989), 249–257 | MR | Zbl
[27] M. Salmassi, Some Classes of Entire Functions of Exponential Type in One and Several Complex Variables, Ph.D. thesis, University of Kentucky, Lexington, KY, 1978 | MR
[28] Russian Math. (Iz. VUZ), 36:9 (1992), 76–82 | MR | Zbl
[29] M. Sheremeta, Analytic Functions of Bounded Index, VNTL Publishers, Lviv, 1999 | MR | Zbl
[30] V. Singh, R.M. Goel, “Differential inequalities and local valency”, Houston J. Math., 18:2 (1992), 215–233 | MR | Zbl