Cohomogeneity one dynamics on three dimensional Minkowski space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 155-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we give a classification of closed and connected Lie groups, up to conjugacy in $\operatorname{Iso}({\mathbb{R}^{1,2}})$, acting by cohomogeneity one on the three dimensional Minkowski space $\mathbb{R}^{1,2}$ in both proper and nonproper dynamics. Then we determine causal properties and types of the orbits.
@article{JMAG_2019_15_2_a0,
     author = {P. Ahmadi},
     title = {Cohomogeneity one dynamics on three dimensional {Minkowski} space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {155--169},
     year = {2019},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a0/}
}
TY  - JOUR
AU  - P. Ahmadi
TI  - Cohomogeneity one dynamics on three dimensional Minkowski space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 155
EP  - 169
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a0/
LA  - en
ID  - JMAG_2019_15_2_a0
ER  - 
%0 Journal Article
%A P. Ahmadi
%T Cohomogeneity one dynamics on three dimensional Minkowski space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 155-169
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a0/
%G en
%F JMAG_2019_15_2_a0
P. Ahmadi. Cohomogeneity one dynamics on three dimensional Minkowski space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 155-169. http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a0/

[1] S. Adams, G. Stuck, “The isometry group of a compact Lorentz manifold, I”, Invent. Math., 129:2 (1997), 239–261 | DOI | MR | Zbl

[2] S. Adams, Dynamics on Lorentz Manifolds, World Scientific Publishing Co., Inc., River Edge, NJ, 2001 | MR | Zbl

[3] P. Ahmadi, “Cohomogeneity one three dimensional anti-de Sitter space, proper and nonproper actions”, Differential Geom. Appl., 39 (2015), 93–112 | DOI | MR | Zbl

[4] D.V. Alekseevskiĭ, “On a proper action of Lie groups”, Uspekhi Math. Nauk, 34 (1979), 219–220 (Russian) | MR | Zbl

[5] A.V. Alekseevskiĭ, D.V. Alekseevskiĭ, “$G$-manifolds with one dimensional orbit space, Lie groups, their discrete subgroups, and invariant theory”, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992, 1–31 | MR

[6] L. Berard-Bergery, “Sur de nouvells variété riemanniennes d'Einstein”, Inst. Élie Cartan, 6 (1982), 1–60 (French) | MR

[7] G.E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, 46, Academic Press, New York–London, 1972 | MR | Zbl

[8] J.J. Duistermaat, J.A.C. Kolk, Lie Groups, Springer-Verlag, Berlin, 2000 | MR | Zbl

[9] M. Hassani, “On the irreducible action of $\mathrm{PSL}(2,\mathbb{R})$ on the $3$-dimensional Einstein universe”, C. R. Math. Acad. Sci. Paris, 355 (2017), 1133–1137 | DOI | MR | Zbl

[10] A.W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, 140, 2nd edition, Birkhäuser Boston, Inc., Boston, MA, 2002 | MR | Zbl

[11] N. Kowalsky, “Noncompact simple automorphism groups of Lorentz manifolds and other geometric manifolds”, Ann. of Math. (2), 144:3 (1996), 611–640 | DOI | MR | Zbl

[12] M.A. Magid, “Lorentzian isoparametric hypersurfaces”, Pacific J. Math., 118:1 (1985), 165–197 | DOI | MR | Zbl

[13] P.S. Mostert, “On a compact Lie group acting on a manifold”, Ann. of Math. (2), 65:3 (1957), 447–455 | DOI | MR | Zbl

[14] R. Mirzaie, S.M.B. Kashani, “On cohomogeneity one flat Riemannian manifolds”, Glasg. Math. J., 44 (2002), 185–190 | DOI | MR | Zbl

[15] R.S. Palais, Ch.-L. Terng, “A general theory of canonical forms”, Trans. Amer. Math. Soc., 300 (1987), 771–789 | DOI | MR | Zbl

[16] R.S. Palais, Ch.-L. Terng, Critical Point Theory and Submanifold Geometry, Lecture Notes in Mathematics, 1353, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl

[17] F. Podestà , A. Spiro, “Some topological properties of chomogeneity one manifolds with negative curvature”, Ann. Global Anal. Geom., 14 (1996), 69–79 | DOI | MR | Zbl

[18] C. Searle, “Cohomogeneity and positive curvature in low dimension”, Math. Z., 214 (1993), 491–498 | DOI | MR | Zbl

[19] J.C. Díaz-Ramos, S.M.B. Kashani, M.J. Vanaei, “Cohomogeneity one actions on anti de Sitter spacetimes”, Results Math., 72:1-2 (2017), 515–536 | DOI | MR

[20] M.J. Vanaei, S.M.B. Kashani, E. Straume, “Cohomogeneity one anti de Sitter space $AdS^{n+1}$”, Lobachevskii J. Math., 37:2 (2016), 204–213 | DOI | MR | Zbl

[21] A. Zeghib, “The identity component of the isometry group of a compact Lorentz manifold”, Duke Math. J., 92:2 (1998), 321–333 | DOI | MR | Zbl

[22] R.J. Zimmer, “On the automorphism group of a compact Lorentz manifold and other geometric manifolds”, Invent. Math., 83 (1986), 411–424 | DOI | MR | Zbl