Propagation of singularities for large solutions of quasilinear parabolic equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 1, pp. 131-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quasilinear parabolic equation with an absorption potential is considered: \begin{equation*} \left(|u|^{q-1}u\right)_t-\Delta_p(u)=-b(t,x)|u|^{\lambda-1}u (t,x)\in(0,T)\times\Omega,\quad\lambda>p>q>0, \end{equation*} where $\Omega$ is a bounded smooth domain in ${R}^n$, $n\geqslant1$, $b$ is an absorption potential which is a continuous function such that $b(t,x)>0$ in $[0,T)\times\Omega$ and $b(t,x)\equiv0$ in $\{T\}\times\Omega$. In the paper, the conditions for $b(t,x)$ that guarantee the uniform boundedness of an arbitrary weak solution of the mentioned equation in an arbitrary subdomain $\Omega_0:\overline{\Omega}_0\subset\Omega$ are considered. Under the above conditions the sharp upper estimate for all weak solutions $u$ is obtained. The estimate holds for the solutions of the equation with arbitrary initial and boundary data, including blow-up data (provided that such a solution exists), namely, $u=\infty$ on $\{0\}\times\Omega$, $u=\infty$ on $(0,T)\times\partial\Omega$.
@article{JMAG_2019_15_1_a5,
     author = {Yevgeniia A. Yevgenieva},
     title = {Propagation of singularities for large solutions of quasilinear parabolic equations},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {131--144},
     year = {2019},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a5/}
}
TY  - JOUR
AU  - Yevgeniia A. Yevgenieva
TI  - Propagation of singularities for large solutions of quasilinear parabolic equations
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 131
EP  - 144
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a5/
LA  - en
ID  - JMAG_2019_15_1_a5
ER  - 
%0 Journal Article
%A Yevgeniia A. Yevgenieva
%T Propagation of singularities for large solutions of quasilinear parabolic equations
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 131-144
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a5/
%G en
%F JMAG_2019_15_1_a5
Yevgeniia A. Yevgenieva. Propagation of singularities for large solutions of quasilinear parabolic equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 1, pp. 131-144. http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a5/

[1] H.W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl

[2] C. Bandle, G. Diaz, J.I. Diaz, “Solutions d'equations de reaction-diffusion non lineaires explosant au bord parabolique”, C. R. Acad. Sci. Paris S'er. I Math., 318 (1994), 455–460 | MR | Zbl

[3] Y. Du, R. Peng, P. Polaĉik, “The parabolic logistic equation with blow-up initial and boundary values”, J. Anal. Math., 118 (2012), 297–316 | DOI | MR | Zbl

[4] V.A. Galaktionov, A.E. Shishkov, “Saint-Venant's principle in blow-up for higher order quasilinear parabolic equations”, Proc. Roy. Soc. Edinburgh. Sect. A, 133:5 (2003), 1075–1119 | DOI | MR | Zbl

[5] V.A. Galaktionov, A.E. Shishkov, “Structure of boundary blow-up for higher-order quasilinear parabolic equations”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 460:2051 (2004), 3299–3325 | DOI | MR | Zbl

[6] J. Math. Sci., 84 (1997), 845–855 | DOI | MR

[7] J. Soviet Math., 62 (1992), 2725–2740 | DOI | MR

[8] A.A. Kovalevsky, I.I. Skrypnik, A.E. Shishkov, Singular Solutions in Nonlinear Elliptic and Parabolic Equations, De Gruyter Series in Nonlinear Analysis and Applications, 24, De Gruyter, Basel, 2016 | MR

[9] W. Al Sayed, L. Veron, “On uniqueness of large solutions of nonlinear parabolic equations in nonsmooth domains”, Adv. Nonlinear Stud., 9 (2009), 149–164 | DOI | MR | Zbl

[10] W. Al Sayed, L. Veron, “Solutions of some nonlinear parabolic equations with initial blow-up”, On the Notions of Solution to Nonlinear Elliptic Problems: Results and Development, Department of Mathematics, Seconda Università di Napoli, Caserta, 2008, 1–23 | MR

[11] A.E. Shishkov, “Large solutions of parabolic logistic equation with spatial and temporal degeneracies”, Discrete Contin. Dyn. Syst., Ser. S, 10:10 (2017), 895–907 | MR | Zbl

[12] A.E. Shishkov, A.G. Shchelkov, “Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains”, Sbornik: Mathematics, 190:3 (1999), 447–479 | DOI | MR | Zbl

[13] A.E. Shishkov, Ye.A. Yevgenieva, Localized peaking regimes for quasilinear doubly degenerate parabolic equations, arXiv: 1811.00629 | MR

[14] A.E. Shishkov, Ye.A. Yevgenieva, “Localized peaking regimes for quasilinear parabolic equations”, Math. Nachr., 2019 | DOI | MR

[15] G. Stampacchia, '{E}quations Elliptiques du Second Ordre à Coefficients Discontinus (Été, 1965), Séminaire de Mathématiques Supérieures, 16, Les Presses de l'Université de Montréal, Montreal, 1966 (French) | MR

[16] L. Veron, “A note on maximal solutions of nonlinear parabolic equations with absorption”, Asymptot. Anal., 72 (2011), 189–200 | DOI | MR | Zbl

[17] Ye.A. Yevgenieva, “Limiting profile of solutions of quasilinear parabolic equations with flat peaking”, J. Math. Sci. (N.Y.), 234 (2018), 106–116 | DOI | MR | Zbl