@article{JMAG_2019_15_1_a3,
author = {Vladimir Rovenskiǐ and Tomasz Zawadzki},
title = {The {Einstein{\textendash}Hilbert} type action on {pseudo-Riemannian} almost-product manifolds},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {86--121},
year = {2019},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a3/}
}
TY - JOUR AU - Vladimir Rovenskiǐ AU - Tomasz Zawadzki TI - The Einstein–Hilbert type action on pseudo-Riemannian almost-product manifolds JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 86 EP - 121 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a3/ LA - en ID - JMAG_2019_15_1_a3 ER -
%0 Journal Article %A Vladimir Rovenskiǐ %A Tomasz Zawadzki %T The Einstein–Hilbert type action on pseudo-Riemannian almost-product manifolds %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2019 %P 86-121 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a3/ %G en %F JMAG_2019_15_1_a3
Vladimir Rovenskiǐ; Tomasz Zawadzki. The Einstein–Hilbert type action on pseudo-Riemannian almost-product manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 1, pp. 86-121. http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a3/
[1] E. Barletta, S. Dragomir, V. Rovenski, M. Soret, “Mixed gravitational field equations on globally hyperbolic spacetimes”, Class. Quantum Grav., 30 (2013), 085015 | DOI | MR | Zbl
[2] E. Barletta, S. Dragomir, V. Rovenski, “The Einstein–Hilbert type action on foliations”, Balkan J. Geom. Appl., 22:1 (2017), 1–17 | MR | Zbl
[3] A. Bejancu, H. Farran, Foliations and Geometric Structures, Mathematics and Its Applications, 580, Springer-Verlag, Dordrecht, 2006 | MR | Zbl
[4] A. Candel, L. Conlon, Foliations, v. I, Graduate Studies in Mathematics, 23, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[5] M. Falcitelli, S. Ianus, A.M. Pastore, Riemannian Submersions and Related Topics, World Scientific, Singapore, 2004 | MR | Zbl
[6] H. Gluck, W. Ziller, “On the volume of a unit vector field on the three-sphere”, Comment. Math. Helv., 61 (1986), 177–192 | DOI | MR | Zbl
[7] A. Gray, “Pseudo-Riemannian almost-product manifolds and submersions”, J. Math. Mech., 16:7 (1967), 715–737 | MR | Zbl
[8] S. Gudmundsson, “On the geometry of harmonic morphisms”, Math. Proc. Cambridge Philos. Soc., 108 (1990), 461–466 | DOI | MR | Zbl
[9] P. Li and L.-F. Tam, “Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set”, Ann. of Math. (2), 125:1 (1987), 171–207 | DOI | MR | Zbl
[10] A.M. Naveira, “A classification of Riemannian almost-product manifolds”, Rend. Mat., 7:3 (1983), 577–592 | MR
[11] B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, New York, 1983 | MR | Zbl
[12] R. Ponge, H. Reckziegel, “Twisted products in pseudo-Riemannian geometry”, Geom. Dedicata, 48 (1993), 15–25 | DOI | MR | Zbl
[13] V. Rovenski, “On solutions to equations with partial Ricci curvature”, J. Geom. Phys., 86 (2014), 370–382 | DOI | MR | Zbl
[14] V. Rovenski, P. Walczak, Topics in Extrinsic Geometry of Codimension-One Foliations, Springer Briefs in Mathematics, Springer, New York, 2011 | DOI | MR | Zbl
[15] P. Tondeur, Foliations on Riemannian Manifolds, Springer-Verlag, New York, 1988 | MR | Zbl
[16] P. Topping, Lectures on the Ricci Flow, LMS Lecture Notes, 325, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[17] P. Walczak, “An integral formula for a Riemannian manifold with two orthogonal complementary distributions”, Colloq. Math., 58 (1990), 243–252 | DOI | MR | Zbl
[18] T. Zawadzki, “Existence conditions for conformal submersions with totally umbilical fibers”, Differential Geom. Appl., 35 (2014), 69–85 | DOI | MR | Zbl