@article{JMAG_2019_15_1_a1,
author = {Larissa Fardigola and Kateryna Khalina},
title = {Reachability and controllability problems for the heat equation on a half-axis},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {57--78},
year = {2019},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a1/}
}
TY - JOUR AU - Larissa Fardigola AU - Kateryna Khalina TI - Reachability and controllability problems for the heat equation on a half-axis JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 57 EP - 78 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a1/ LA - en ID - JMAG_2019_15_1_a1 ER -
%0 Journal Article %A Larissa Fardigola %A Kateryna Khalina %T Reachability and controllability problems for the heat equation on a half-axis %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2019 %P 57-78 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a1/ %G en %F JMAG_2019_15_1_a1
Larissa Fardigola; Kateryna Khalina. Reachability and controllability problems for the heat equation on a half-axis. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 1, pp. 57-78. http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a1/
[1] V.R. Cabanillas, S.B. De Menezes, E. Zuazua, “Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms”, J. Optim. Theory Appl., 110 (2001), 245–264 | DOI | MR | Zbl
[2] P. Cannarsa, P. Martinez, J. Vancostenoble, “Null controllability of the heat equation in unbounded domains by a finite measure control region”, ESAIM Control Optim. Calc. Var., 10 (2004), 381–408 | DOI | MR | Zbl
[3] J. Darde, S. Ervedoza, “On the reachable set for the one-dimensional heat equation”, SIAM J. Control Optim., 56 (2018), 1692–1715 | DOI | MR | Zbl
[4] L.V. Fardigola, Transformation Operators and Influence Operators in Control Problems, Thesis (Dr. Hab.), Kharkiv, 2016 (Ukrainian) | Zbl
[5] S.G. Gindikin, L.R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992 | MR | Zbl
[6] L. Gosse, O. Runberg, “Resolution of the finite Markov moment problem”, Comptes Rendus Mathematiques, 341 (2005), 775–789 | DOI | MR
[7] Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, Applied Mathematics Series, 55, National Bureau of Standards, Washington, DC, 1972 | MR
[8] S. Micu, E. Zuazua, “On the lack of null controllability of the heat equation on the half-space”, Port. Math. (N.S.), 58:1 (2001), 1–24 | MR | Zbl
[9] S. Micu, E. Zuazua, “On the lack of null controllability of the heat equation on the half-line”, Trans. Amer. Math. Soc., 353:4 (2001), 1635–1659 | DOI | MR | Zbl
[10] A. Munch, P. Pedregal, “Numerical null controllability of the heat equation through a least squares and variational approach”, European J. Appl. Math., 25 (2014), 277–306 | DOI | MR | Zbl
[11] L. de Teresa, E. Zuazua, “Approximate controllability of a semilinear heat equation in unbounded domains”, Nonlinear Anal., 37:8 (1999), 1059–1090 | DOI | MR | Zbl
[12] E. Zuazua, “Some problems and results on the controllability of partial differential equations”, Proceedings of the Second European Congress of Mathematics (Budapest, July, 1996), Progress in Mathematics, 169, Birkhäuser Verlag, Basel, 276–311 | MR | Zbl