Arity shape of polyadic algebraic structures
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 1, pp. 3-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Concrete two-set (module-like and algebra-like) algebraic structures are investigated from the viewpoint that the initial arities of all operations are arbitrary. Relations between operations arising from the structure definitions, however, lead to the restrictions which determine their possible arity shapes and lead us to formulate a partial arity freedom principle. Polyadic vector spaces and algebras, dual vector spaces, direct sums, tensor products and inner pairing spaces are reconsidered. Elements of polyadic operator theory are outlined: multistars and polyadic analogs of adjoints, operator norms, isometries and projections are introduced, as well as polyadic $C^{*}$-algebras, Toeplitz algebras and Cuntz algebras represented by polyadic operators. It is shown that congruence classes are polyadic rings of a special kind. Polyadic numbers are introduced (see Definition 7.17), and Diophantine equations over these polyadic rings are then considered. Polyadic analogs of the Lander–Parkin–Selfridge conjecture and Fermat's Last Theorem are formulated. For polyadic numbers neither of these statements holds. Polyadic versions of Frolov's theorem and the Tarry–Escott problem are presented.
@article{JMAG_2019_15_1_a0,
     author = {Steven Duplij},
     title = {Arity shape of polyadic algebraic structures},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--56},
     year = {2019},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a0/}
}
TY  - JOUR
AU  - Steven Duplij
TI  - Arity shape of polyadic algebraic structures
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 3
EP  - 56
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a0/
LA  - en
ID  - JMAG_2019_15_1_a0
ER  - 
%0 Journal Article
%A Steven Duplij
%T Arity shape of polyadic algebraic structures
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 3-56
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a0/
%G en
%F JMAG_2019_15_1_a0
Steven Duplij. Arity shape of polyadic algebraic structures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 1, pp. 3-56. http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a0/

[1] J.-P. Allouche, J. Shallit, “The ubiquitous Prouhet–Thue–Morse sequence”, Sequences and their Applications, SETA '98, Proceedings of the International Conference (Singapore, December, 1998), Springer, London, 1999, 1–16 | MR | Zbl

[2] V.D. Belousov, $n$-Ary Quasigroups, Shtintsa, Kishinev, 1972 | MR

[3] C. Bergman, Universal Algebra: Fundamentals and Selected Topics, CRC Press, New York, 2012 | MR | Zbl

[4] D. Boccioni, “Caratterizzazione di una classe di anelli generalizzati”, Rend. Semin. Mat. Univ. Padova, 35 (1965), 116–127 | MR | Zbl

[5] P. Borwein, “The Prouhet–Tarry–Escott problem”, Computational Excursions in Analysis and Number Theory, CMS books in mathematics, 10, Springer-Verlag, New York, 2002, 85–95 | MR

[6] R. Carlsson, “Cohomology of associative triple systems”, Proc. Amer. Math. Soc., 60 (1976), 1–7 | DOI | MR

[7] R. Carlsson, “${N}$-ary algebras”, Nagoya Math. J., 78 (1980), 45–56 | DOI | MR | Zbl

[8] N. Celakoski, “On $({F},{G})$-rings”, Prirod.-Mat. Fak. Univ. Kiril Metodij Skopje Godišen Zb., 28 (1977), 5–15 | MR | Zbl

[9] P.M. Cohn, Universal Algebra, Harper Row, New York, 1965 | MR | Zbl

[10] G. Crombez, “On $(n,m)$-rings”, Abh. Math. Semin. Univ. Hamb., 37 (1972), 180–199 | DOI | MR | Zbl

[11] G. Crombez, J. Timm, “On $(n,m)$-quotient rings”, Abh. Math. Semin. Univ. Hamb., 37 (1972), 200–203 | DOI | MR | Zbl

[12] J. Cuntz, “Simple ${C}^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[13] G. {Č}upona, “On $[m,n]$-rings”, Bull. Soc. Math. Phys. Macedoine, 16 (1965), 5–9 | MR

[14] K. Denecke, S.L. Wismath, Universal Algebra and Coalgebra, World Scientific, Singapore, 2009 | MR | Zbl

[15] H.L. Dorwart, O.E. Brown, “The Tarry–Escott problem”, Amer. Math. Monthly, 44 (1937), 613–626 | DOI | MR

[16] S. Duplij, “Polyadic systems, representations and quantum groups”, Visn. Kharkiv. Nats. Univ., Yadra, Chastynky, Polya, 1017, no. 3(55), 2012, 28–59; Expanded version available from: arXiv: 1308.4060

[17] S. Duplij, “A “q-deformed” generalization of the Hosszú-Gluskin theorem”, Filomat, 30 (2016), 2985–3005 | DOI | MR | Zbl

[18] S. Duplij, “Polyadic integer numbers and finite (m,n)-fields”, p-Adic Numbers, Ultrametric Analysis and Appl., 9 (2017), 257–281, arXiv: 1707.00719 | DOI | MR

[19] S. Duplij, W. Marcinek, “Semisupermanifolds and regularization of categories, modules, algebras and Yang-Baxter equation”, Nucl. Phys. Proc. Suppl., 102 (2001), 293–297 | DOI | MR | Zbl

[20] S. Duplij, W. Marcinek, “Regular obstructed categories and topological quantum field theory”, J. Math. Phys., 43 (2002), 3329–3341 | DOI | MR | Zbl

[21] S. Duplij, W. Werner, Structure of unital 3-fields, arXiv: 1505.04393 | MR

[22] R.L. Ekl, “New results in equal sums of like powers”, Math. Comp., 67 (1998), 1309–1315 | DOI | MR | Zbl

[23] N.D. Elkies, “On ${A}^4 + {B}^4 + {C}^4 = {D}^4$”, Math. Comp., 51 (1988), 825–835 | MR | Zbl

[24] M. {Frolov}, “Égalités à deux degrés”, Bull. Soc. Math. Fr., 17 (1889), 69–83 | DOI | MR | Zbl

[25] A.M. Gal'mak, $n$-{A}ry Groups, v. 1, Gomel University, Gomel, 2003

[26] K. Głazek, J. Michalski, “On polyadic groups which are term-derived from groups”, Stud. Sci. Math. Hung., 19 (1984), 307–315 | MR

[27] G. Grätser, Universal Algebra, D. Van Nostrand Co., Inc., New York–Toronto, 1968 | MR

[28] P. Halmos, Algebraic Logic, Chelsea Publishing, New York, 1962 | MR | Zbl

[29] L. Iancu, M. S. Pop, “A Post type theorem for $(m,n)$ fields”, Proceedings of the Scientific Communications Meeting (“Aurel Vlaicu” University, Arad, Romania, May 16–17, 1996), v. 14A, Edition III, “Aurel Vlaicu” Univ. of Arad Publishing Centre, Arad, 1997, 13–18 | MR | Zbl

[30] L. Lander, T. Parkin, J. Selfridge, “A survey of equal sums of like powers”, Math. Comput., 21 (1967), 446–459 | DOI | MR | Zbl

[31] J.J. Leeson, A.T. Butson, “On the general theory of $(m,n)$ rings”, Algebra Univers., 11 (1980), 42–76 | DOI | MR | Zbl

[32] D.H. Lehmer, “The Tarry–Escott problem”, Scripta Math., 13 (1947), 37–41 | MR | Zbl

[33] W.G. Lister, “Ternary rings”, Trans. Amer. Math. Soc., 154 (1971), 37–55 | DOI | MR | Zbl

[34] J. Michalski, “On ${J}$-derived polyadic groups”, Mathematica (Cluj), 30:53 (1988), 149–155 | MR | Zbl

[35] P.W. Michor, A.M. Vinogradov, “n-ary Lie and associative algebras”, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 373–392 | MR | Zbl

[36] F. Mignot, “Contrôle dans les inéquations variationelles elliptiques”, J. Funct. Anal., 22 (1976), 130–185 | DOI | MR | Zbl

[37] A. Misiak, “n-Inner product spaces”, Math. Nachr., 140 (1989), 299–319 | DOI | MR | Zbl

[38] J.D. Monk, F. Sioson, “$m$-semigroups, semigroups and function representations”, Fundam. Math., 59 (1966), 233–241 | DOI | MR | Zbl

[39] H.D. Nguyen, “A new proof of the Prouhet–Tarry–Escott problem”, Integers, 16 (2016), A01, 1–9 | MR

[40] A. Pop and M.S. Pop, “Some embeddings theorems for $(n,2)$-rings”, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Fasc. Mat.-Inform., 18 (2002), 311–316 | MR | Zbl

[41] S.A. Rusakov, Some Applications of $n$-ary Group Theory, Belaruskaya Navuka, Minsk, 1998

[42] R. Spira, “The Diophantine equation $x\sp 2+y\sp 2+z\sp 2=m\sp 2$”, Am. Math. Mon., 69 (1962), 360–365 | MR | Zbl

[43] K. Subba Rao, “On sums of sixth powers”, J. London Math. Soc., 9:3 (1934), 172–173 | DOI | MR

[44] A. Wiles, “Modular elliptic curves and Fermat's Last Theorem”, Ann. Math., 141 (1995), 443–551 | DOI | MR | Zbl

[45] D. Zupnik, “Polyadic semigroups”, Publ. Math. (Debrecen), 14 (1967), 273–279 | MR | Zbl