@article{JMAG_2019_15_1_a0,
author = {Steven Duplij},
title = {Arity shape of polyadic algebraic structures},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {3--56},
year = {2019},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a0/}
}
Steven Duplij. Arity shape of polyadic algebraic structures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 1, pp. 3-56. http://geodesic.mathdoc.fr/item/JMAG_2019_15_1_a0/
[1] J.-P. Allouche, J. Shallit, “The ubiquitous Prouhet–Thue–Morse sequence”, Sequences and their Applications, SETA '98, Proceedings of the International Conference (Singapore, December, 1998), Springer, London, 1999, 1–16 | MR | Zbl
[2] V.D. Belousov, $n$-Ary Quasigroups, Shtintsa, Kishinev, 1972 | MR
[3] C. Bergman, Universal Algebra: Fundamentals and Selected Topics, CRC Press, New York, 2012 | MR | Zbl
[4] D. Boccioni, “Caratterizzazione di una classe di anelli generalizzati”, Rend. Semin. Mat. Univ. Padova, 35 (1965), 116–127 | MR | Zbl
[5] P. Borwein, “The Prouhet–Tarry–Escott problem”, Computational Excursions in Analysis and Number Theory, CMS books in mathematics, 10, Springer-Verlag, New York, 2002, 85–95 | MR
[6] R. Carlsson, “Cohomology of associative triple systems”, Proc. Amer. Math. Soc., 60 (1976), 1–7 | DOI | MR
[7] R. Carlsson, “${N}$-ary algebras”, Nagoya Math. J., 78 (1980), 45–56 | DOI | MR | Zbl
[8] N. Celakoski, “On $({F},{G})$-rings”, Prirod.-Mat. Fak. Univ. Kiril Metodij Skopje Godišen Zb., 28 (1977), 5–15 | MR | Zbl
[9] P.M. Cohn, Universal Algebra, Harper Row, New York, 1965 | MR | Zbl
[10] G. Crombez, “On $(n,m)$-rings”, Abh. Math. Semin. Univ. Hamb., 37 (1972), 180–199 | DOI | MR | Zbl
[11] G. Crombez, J. Timm, “On $(n,m)$-quotient rings”, Abh. Math. Semin. Univ. Hamb., 37 (1972), 200–203 | DOI | MR | Zbl
[12] J. Cuntz, “Simple ${C}^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl
[13] G. {Č}upona, “On $[m,n]$-rings”, Bull. Soc. Math. Phys. Macedoine, 16 (1965), 5–9 | MR
[14] K. Denecke, S.L. Wismath, Universal Algebra and Coalgebra, World Scientific, Singapore, 2009 | MR | Zbl
[15] H.L. Dorwart, O.E. Brown, “The Tarry–Escott problem”, Amer. Math. Monthly, 44 (1937), 613–626 | DOI | MR
[16] S. Duplij, “Polyadic systems, representations and quantum groups”, Visn. Kharkiv. Nats. Univ., Yadra, Chastynky, Polya, 1017, no. 3(55), 2012, 28–59; Expanded version available from: arXiv: 1308.4060
[17] S. Duplij, “A “q-deformed” generalization of the Hosszú-Gluskin theorem”, Filomat, 30 (2016), 2985–3005 | DOI | MR | Zbl
[18] S. Duplij, “Polyadic integer numbers and finite (m,n)-fields”, p-Adic Numbers, Ultrametric Analysis and Appl., 9 (2017), 257–281, arXiv: 1707.00719 | DOI | MR
[19] S. Duplij, W. Marcinek, “Semisupermanifolds and regularization of categories, modules, algebras and Yang-Baxter equation”, Nucl. Phys. Proc. Suppl., 102 (2001), 293–297 | DOI | MR | Zbl
[20] S. Duplij, W. Marcinek, “Regular obstructed categories and topological quantum field theory”, J. Math. Phys., 43 (2002), 3329–3341 | DOI | MR | Zbl
[21] S. Duplij, W. Werner, Structure of unital 3-fields, arXiv: 1505.04393 | MR
[22] R.L. Ekl, “New results in equal sums of like powers”, Math. Comp., 67 (1998), 1309–1315 | DOI | MR | Zbl
[23] N.D. Elkies, “On ${A}^4 + {B}^4 + {C}^4 = {D}^4$”, Math. Comp., 51 (1988), 825–835 | MR | Zbl
[24] M. {Frolov}, “Égalités à deux degrés”, Bull. Soc. Math. Fr., 17 (1889), 69–83 | DOI | MR | Zbl
[25] A.M. Gal'mak, $n$-{A}ry Groups, v. 1, Gomel University, Gomel, 2003
[26] K. Głazek, J. Michalski, “On polyadic groups which are term-derived from groups”, Stud. Sci. Math. Hung., 19 (1984), 307–315 | MR
[27] G. Grätser, Universal Algebra, D. Van Nostrand Co., Inc., New York–Toronto, 1968 | MR
[28] P. Halmos, Algebraic Logic, Chelsea Publishing, New York, 1962 | MR | Zbl
[29] L. Iancu, M. S. Pop, “A Post type theorem for $(m,n)$ fields”, Proceedings of the Scientific Communications Meeting (“Aurel Vlaicu” University, Arad, Romania, May 16–17, 1996), v. 14A, Edition III, “Aurel Vlaicu” Univ. of Arad Publishing Centre, Arad, 1997, 13–18 | MR | Zbl
[30] L. Lander, T. Parkin, J. Selfridge, “A survey of equal sums of like powers”, Math. Comput., 21 (1967), 446–459 | DOI | MR | Zbl
[31] J.J. Leeson, A.T. Butson, “On the general theory of $(m,n)$ rings”, Algebra Univers., 11 (1980), 42–76 | DOI | MR | Zbl
[32] D.H. Lehmer, “The Tarry–Escott problem”, Scripta Math., 13 (1947), 37–41 | MR | Zbl
[33] W.G. Lister, “Ternary rings”, Trans. Amer. Math. Soc., 154 (1971), 37–55 | DOI | MR | Zbl
[34] J. Michalski, “On ${J}$-derived polyadic groups”, Mathematica (Cluj), 30:53 (1988), 149–155 | MR | Zbl
[35] P.W. Michor, A.M. Vinogradov, “n-ary Lie and associative algebras”, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 373–392 | MR | Zbl
[36] F. Mignot, “Contrôle dans les inéquations variationelles elliptiques”, J. Funct. Anal., 22 (1976), 130–185 | DOI | MR | Zbl
[37] A. Misiak, “n-Inner product spaces”, Math. Nachr., 140 (1989), 299–319 | DOI | MR | Zbl
[38] J.D. Monk, F. Sioson, “$m$-semigroups, semigroups and function representations”, Fundam. Math., 59 (1966), 233–241 | DOI | MR | Zbl
[39] H.D. Nguyen, “A new proof of the Prouhet–Tarry–Escott problem”, Integers, 16 (2016), A01, 1–9 | MR
[40] A. Pop and M.S. Pop, “Some embeddings theorems for $(n,2)$-rings”, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Fasc. Mat.-Inform., 18 (2002), 311–316 | MR | Zbl
[41] S.A. Rusakov, Some Applications of $n$-ary Group Theory, Belaruskaya Navuka, Minsk, 1998
[42] R. Spira, “The Diophantine equation $x\sp 2+y\sp 2+z\sp 2=m\sp 2$”, Am. Math. Mon., 69 (1962), 360–365 | MR | Zbl
[43] K. Subba Rao, “On sums of sixth powers”, J. London Math. Soc., 9:3 (1934), 172–173 | DOI | MR
[44] A. Wiles, “Modular elliptic curves and Fermat's Last Theorem”, Ann. Math., 141 (1995), 443–551 | DOI | MR | Zbl
[45] D. Zupnik, “Polyadic semigroups”, Publ. Math. (Debrecen), 14 (1967), 273–279 | MR | Zbl