Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 4
Cet article a éte moissonné depuis la source Math-Net.Ru
We study asymptotic expansion as $\nu\to0$ for integrals over ${ \mathbb{R} }^{2d}=\{(x,y)\}$ of quotients of the form $F(x,y) \cos(\lambda x\cdot y) \big/ \big( (x\cdot y)^2+\nu^2\big)$, where $\lambda\ge 0$ and $F$ decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence.
@article{JMAG_2018_14_4_a3,
author = {Sergei Kuksin},
title = {Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
year = {2018},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_4_a3/}
}
TY - JOUR AU - Sergei Kuksin TI - Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_4_a3/ LA - en ID - JMAG_2018_14_4_a3 ER -
%0 Journal Article %A Sergei Kuksin %T Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2018 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/JMAG_2018_14_4_a3/ %G en %F JMAG_2018_14_4_a3
Sergei Kuksin. Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 4. http://geodesic.mathdoc.fr/item/JMAG_2018_14_4_a3/
[1] Math. Notes, 103 (2018), 713–723 | DOI | DOI | MR | Zbl
[2] S. Kuksin, “Asymptotic expansions for some integrals of quotients with degenerated divisors”, Russ. J. Math. Phys., 24 (2017), 476–487 | DOI | MR | Zbl
[3] S. Nazarenko, Wave Turbulence, Lecture Notes in Physics, 825, Springer, Heidelberg, 2011 | DOI | MR | Zbl