Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case)
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 362-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is a continuation of work [15] in which the general setting for analogs of the Szegö theorem for ergodic operators was given and several interesting cases were considered. Here we extend the results of [15] to a wider class of test functions and symbols which determine the Szegö-type asymptotic formula for the one-dimensional Schrödinger operator with ergodic random potential. We show that in this case the subleading term of the formula is given by a Central Limit Theorem in the spectral context, hence the term is asymptotically proportional to $L^{1/2}$, where $L$ is the length of the interval to which the Schrödinger operator is initially restricted. This has to be compared with the classical Szegö formula, where the subleading term is bounded in $L$, $L \to \infty$. We prove an analog of standard Central Limit Theorem (the convergence of the probability of the corresponding event to the Gaussian Law) as well as an analog of the almost sure Central Limit Theorem (the convergence with probability $1$ of the logarithmic means of the indicator of the corresponding event to the Gaussian Law). We illustrate our general results by establishing the asymptotic formula for the entanglement entropy of free disordered fermions for non-zero temperature.
@article{JMAG_2018_14_3_a5,
     author = {L. Pastur and M. Shcherbina},
     title = {Szeg\"o-type theorems for one-dimensional {Schr\"odinger} operator with random potential (smooth case)},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {362--388},
     year = {2018},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a5/}
}
TY  - JOUR
AU  - L. Pastur
AU  - M. Shcherbina
TI  - Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case)
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 362
EP  - 388
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a5/
LA  - en
ID  - JMAG_2018_14_3_a5
ER  - 
%0 Journal Article
%A L. Pastur
%A M. Shcherbina
%T Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case)
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 362-388
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a5/
%G en
%F JMAG_2018_14_3_a5
L. Pastur; M. Shcherbina. Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case). Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 362-388. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a5/

[1] H. Abdul-Rahman, G. Stolz, “A uniform area law for the entanglement of eigenstates in the disordered XY chain”, J. Math. Phys., 56 (2015), 121901 | DOI | MR | Zbl

[2] M. Aizenman, S. Warzel, Random Operators: Disorder Effects on Quantum Spectra and Dynamics, Amer. Math. Soc., Providence, 2015 | MR | Zbl

[3] F. Ares, J.G. Esteve, F. Falceto, E. Sanchez-Burillo, “Excited state entanglement in homogeneous fermionic chains”, J. Phys. A: Math. Theor., 47 (2014), 245301 | DOI | MR | Zbl

[4] I. Berkes, “Results and Problems Related to the Pointwise Central Limit Theorem”, Asymptotic Results in Probability and Statistics, ed. B. Szyszkowicz, Elsevier, Amsterdam, 1998, 59–96 | DOI | MR | Zbl

[5] N. H. Bingham, “Szegö's theorem and its probabilistic descendants”, Probability Surveys, 9 (2012), 287–324 | DOI | MR | Zbl

[6] A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, Springer-Verlag, Berlin, 1990 | MR | Zbl

[7] J.-R. Chazottes, S. Gouëzel, “On almost-sure versions of classical limit theorems for dynamical systems”, Probab. Theory Relat. Fields, 138 (2007), 195–234 | DOI | MR | Zbl

[8] P. Deift, A. Its, I. Krasovsky, “Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results”, Comm. Pure Appl. Math., 66 (2013), 1360–1438 | DOI | MR | Zbl

[9] M. Denker, “Tercentennial anniversary of Bernoulli's law of large numbers”, Bull. AMS, 50 (2013), 373–390 | DOI | MR | Zbl

[10] J. Eisert, M. Cramer, M. B. Plenio, “Area laws for the entanglement entropy”, Rev. Mod. Phys., 82 (2010), 277 | DOI | MR | Zbl

[11] A. Elgart, L. Pastur, M. Shcherbina, “Large block properties of the entanglement entropy of free disordered Fermions”, J. Stat. Phys., 166 (2017), 1092–1127 | DOI | MR | Zbl

[12] U. Grenander, G. Szegö, Töplitz Forms and Their Applications, University of California Press, 1958 | MR

[13] I.A. Ibragimov, M. A. Lifshitz, “On almost sure limit theorems”, Theory Probab. Appl., 44 (2000), 254–272 | DOI | MR

[14] I. A. Ibragimov, Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971 | MR | Zbl

[15] W. Kirsch, L. A. Pastur, “On the analogues of Szegö's theorem for ergodic operators”, Sbornik: Mathematics, 206:1 (2015), 93–119 | DOI | MR | Zbl

[16] M. Lacey, W. Philipp, “A note on the almost everywhere central limit theorem”, Statist. Probab. Lett., 9 (1990), 201–205 | DOI | MR | Zbl

[17] A. Laptev, Yu. Safarov, “Szegö type limit theorems”, J. Funct. Anal., 138 (1996), 544–559 | DOI | MR | Zbl

[18] H. Leschke, A. Sobolev, W. Spitzer, “Scaling of Ré nyi entanglement entropies of the free Fermi-gas ground state: a rigorous proof”, Phys. Rev. Lett., 112 (2014), 160403 | DOI

[19] L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992 | MR | Zbl

[20] L. Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, AMS, Providence, 2011 | MR | Zbl

[21] L. Pastur, V. Slavin, “Area law scaling for the entropy of disordered quasifree fermions”, Phys. Rev. Lett., 113 (2014), 150404 | DOI

[22] L. Pastur, V. Slavin, “The absence of the selfaveraging property of the entanglement entropy of disordered free Fermions in one dimension”, J. Stat. Phys., 170 (2018), 207–220 | DOI | MR | Zbl

[23] M. Peligrad, Q. M. Shao, “A note on the almost sure central limit theorem for weakly dependent random variables”, Stat. Probab. Lett., 22 (1995), 131–136 | DOI | MR | Zbl

[24] B. Pfirsch, A. V. Sobolev, “Formulas of Szegö type for the periodic Schrödinger operator”, Commun. Math. Phys., 358 (2018), 675–704 | DOI | MR | Zbl

[25] A. Ya. Reznikova, “The Central Limit Theorem for the spectrum of random Jacobi matrices”, Theory Probab. Appl., 25 (1981), 504–513 | DOI | MR | Zbl

[26] B. Simon, Szegö's Theorem and its Descendants. Spectral Theory for $L^{2}$ Perturbations of Orthogonal Polynomials, Princeton University Press, Princeton, NJ, 2011 | MR

[27] A. V. Sobolev, Pseudodifferential Operators with Discontinuous Symbols: Widoms Conjecture, Memoirs of the AMS, 222, no. 1043, Amer. Math. Soc., Providence, 2013 | MR

[28] H. Widom, “On a Class of Integral Operators with Discontinuous Symbol”, Oper. Theory: Adv. Appl., 4, Birkhauser, Basel, 1982, 477–500 | DOI | MR

[29] H. Widom, “Szegö expansions for operators with smooth or nonsmooth symbol”, Operator Theory: Operator Algebras and Applications, v. 1, Pure Math., 51, AMS, Providence, 1990 | MR