@article{JMAG_2018_14_3_a5,
author = {L. Pastur and M. Shcherbina},
title = {Szeg\"o-type theorems for one-dimensional {Schr\"odinger} operator with random potential (smooth case)},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {362--388},
year = {2018},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a5/}
}
TY - JOUR AU - L. Pastur AU - M. Shcherbina TI - Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case) JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 362 EP - 388 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a5/ LA - en ID - JMAG_2018_14_3_a5 ER -
%0 Journal Article %A L. Pastur %A M. Shcherbina %T Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case) %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2018 %P 362-388 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a5/ %G en %F JMAG_2018_14_3_a5
L. Pastur; M. Shcherbina. Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case). Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 362-388. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a5/
[1] H. Abdul-Rahman, G. Stolz, “A uniform area law for the entanglement of eigenstates in the disordered XY chain”, J. Math. Phys., 56 (2015), 121901 | DOI | MR | Zbl
[2] M. Aizenman, S. Warzel, Random Operators: Disorder Effects on Quantum Spectra and Dynamics, Amer. Math. Soc., Providence, 2015 | MR | Zbl
[3] F. Ares, J.G. Esteve, F. Falceto, E. Sanchez-Burillo, “Excited state entanglement in homogeneous fermionic chains”, J. Phys. A: Math. Theor., 47 (2014), 245301 | DOI | MR | Zbl
[4] I. Berkes, “Results and Problems Related to the Pointwise Central Limit Theorem”, Asymptotic Results in Probability and Statistics, ed. B. Szyszkowicz, Elsevier, Amsterdam, 1998, 59–96 | DOI | MR | Zbl
[5] N. H. Bingham, “Szegö's theorem and its probabilistic descendants”, Probability Surveys, 9 (2012), 287–324 | DOI | MR | Zbl
[6] A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, Springer-Verlag, Berlin, 1990 | MR | Zbl
[7] J.-R. Chazottes, S. Gouëzel, “On almost-sure versions of classical limit theorems for dynamical systems”, Probab. Theory Relat. Fields, 138 (2007), 195–234 | DOI | MR | Zbl
[8] P. Deift, A. Its, I. Krasovsky, “Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results”, Comm. Pure Appl. Math., 66 (2013), 1360–1438 | DOI | MR | Zbl
[9] M. Denker, “Tercentennial anniversary of Bernoulli's law of large numbers”, Bull. AMS, 50 (2013), 373–390 | DOI | MR | Zbl
[10] J. Eisert, M. Cramer, M. B. Plenio, “Area laws for the entanglement entropy”, Rev. Mod. Phys., 82 (2010), 277 | DOI | MR | Zbl
[11] A. Elgart, L. Pastur, M. Shcherbina, “Large block properties of the entanglement entropy of free disordered Fermions”, J. Stat. Phys., 166 (2017), 1092–1127 | DOI | MR | Zbl
[12] U. Grenander, G. Szegö, Töplitz Forms and Their Applications, University of California Press, 1958 | MR
[13] I.A. Ibragimov, M. A. Lifshitz, “On almost sure limit theorems”, Theory Probab. Appl., 44 (2000), 254–272 | DOI | MR
[14] I. A. Ibragimov, Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971 | MR | Zbl
[15] W. Kirsch, L. A. Pastur, “On the analogues of Szegö's theorem for ergodic operators”, Sbornik: Mathematics, 206:1 (2015), 93–119 | DOI | MR | Zbl
[16] M. Lacey, W. Philipp, “A note on the almost everywhere central limit theorem”, Statist. Probab. Lett., 9 (1990), 201–205 | DOI | MR | Zbl
[17] A. Laptev, Yu. Safarov, “Szegö type limit theorems”, J. Funct. Anal., 138 (1996), 544–559 | DOI | MR | Zbl
[18] H. Leschke, A. Sobolev, W. Spitzer, “Scaling of Ré nyi entanglement entropies of the free Fermi-gas ground state: a rigorous proof”, Phys. Rev. Lett., 112 (2014), 160403 | DOI
[19] L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992 | MR | Zbl
[20] L. Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, AMS, Providence, 2011 | MR | Zbl
[21] L. Pastur, V. Slavin, “Area law scaling for the entropy of disordered quasifree fermions”, Phys. Rev. Lett., 113 (2014), 150404 | DOI
[22] L. Pastur, V. Slavin, “The absence of the selfaveraging property of the entanglement entropy of disordered free Fermions in one dimension”, J. Stat. Phys., 170 (2018), 207–220 | DOI | MR | Zbl
[23] M. Peligrad, Q. M. Shao, “A note on the almost sure central limit theorem for weakly dependent random variables”, Stat. Probab. Lett., 22 (1995), 131–136 | DOI | MR | Zbl
[24] B. Pfirsch, A. V. Sobolev, “Formulas of Szegö type for the periodic Schrödinger operator”, Commun. Math. Phys., 358 (2018), 675–704 | DOI | MR | Zbl
[25] A. Ya. Reznikova, “The Central Limit Theorem for the spectrum of random Jacobi matrices”, Theory Probab. Appl., 25 (1981), 504–513 | DOI | MR | Zbl
[26] B. Simon, Szegö's Theorem and its Descendants. Spectral Theory for $L^{2}$ Perturbations of Orthogonal Polynomials, Princeton University Press, Princeton, NJ, 2011 | MR
[27] A. V. Sobolev, Pseudodifferential Operators with Discontinuous Symbols: Widoms Conjecture, Memoirs of the AMS, 222, no. 1043, Amer. Math. Soc., Providence, 2013 | MR
[28] H. Widom, “On a Class of Integral Operators with Discontinuous Symbol”, Oper. Theory: Adv. Appl., 4, Birkhauser, Basel, 1982, 477–500 | DOI | MR
[29] H. Widom, “Szegö expansions for operators with smooth or nonsmooth symbol”, Operator Theory: Operator Algebras and Applications, v. 1, Pure Math., 51, AMS, Providence, 1990 | MR