The extended Leibniz rule and related equations in the space of rapidly decreasing functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 336-361 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the extended Leibniz rule $T(f\cdot g)=Tf \cdot Ag+Af\cdot Tg$ for operators $T$ and $A$ in the space of rapidly decreasing functions in both cases of complex and real-valued functions. We find that $Tf$ may be a linear combination of logarithmic derivatives of $f$ and its complex conjugate $\overline{f}$ with smooth coefficients up to some finite orders $m$ and $n$ respectively and $Af=f^{m}\cdot \overline{f}$ $^{n} $. In other cases $Tf$ and $Af$ may include separately the real and the imaginary part of $f$. In some way the equation yields a joint characterization of the derivative and the Fourier transform of $f$. We discuss conditions when $T$ is the derivative and $A$ is the identity. We also consider differentiable solutions of related functional equations reminiscent of those for the sine and cosine functions.
@article{JMAG_2018_14_3_a4,
     author = {Hermann K\"onig and Vitali Milman},
     title = {The extended {Leibniz} rule and related equations in the space of rapidly decreasing functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {336--361},
     year = {2018},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a4/}
}
TY  - JOUR
AU  - Hermann König
AU  - Vitali Milman
TI  - The extended Leibniz rule and related equations in the space of rapidly decreasing functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 336
EP  - 361
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a4/
LA  - en
ID  - JMAG_2018_14_3_a4
ER  - 
%0 Journal Article
%A Hermann König
%A Vitali Milman
%T The extended Leibniz rule and related equations in the space of rapidly decreasing functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 336-361
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a4/
%G en
%F JMAG_2018_14_3_a4
Hermann König; Vitali Milman. The extended Leibniz rule and related equations in the space of rapidly decreasing functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 336-361. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a4/

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, 1966 | MR | Zbl

[2] S. Alesker, S. Artstein-Avidan, D. Faifman, V. Milman, “A characterization of product preserving maps with applications to a characterization of the Fourier transform”, Illinois J. Math., 54 (2010), 1115–1132 | MR | Zbl

[3] S. Alesker, S. Artstein-Avidan, V. Milman, “A characterization of the Fourier transform and related topics”, Linear and complex analysis, Dedicated to V. P. Havin, Amer. Math. Soc. Transl., 226, eds. A. Alexandrov et al. ; Advances in the Math. Sciences, 63, 2009, 11–26 | MR | Zbl

[4] S. Artstein-Avidan, D. Faifman, V. Milman, “On multiplicative maps of continuous and smooth functions”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 2050, Springer, Heidelberg, 2012, 35–59 | DOI | MR | Zbl

[5] S. Artstein-Avidan, H. König, V. Milman, “The chain rule as a functional equation”, J. Funct. Anal., 259 (2010), 2999–3024 | DOI | MR | Zbl

[6] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983 | MR

[7] H. König, V. Milman, “Characterizing the derivative and the entropy function by the Leibniz rule”, with an appendix by D. Faifman, J. Funct. Anal., 261 (2011), 1325–1344 | DOI | MR | Zbl

[8] A. N. Milgram, “Multiplicative semigroups of continuous functions”, Duke Math. J., 16 (1949), 377–383 | DOI | MR | Zbl

[9] J. Mrčun, “On isomorphisms of algebras of smooth functions”, Proc. Amer. Math. Soc., 133 (2005), 3109–3113 | DOI | MR | Zbl

[10] J. Mrčun, P. Šemrl, “Multplicative bijections between algebras of differentiable functions”, Ann. Acad. Sci. Fenn. Math., 32 (2007), 471–480 | MR

[11] E. Shustin, private communication

[12] M. Sodin, private communication