@article{JMAG_2018_14_3_a4,
author = {Hermann K\"onig and Vitali Milman},
title = {The extended {Leibniz} rule and related equations in the space of rapidly decreasing functions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {336--361},
year = {2018},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a4/}
}
TY - JOUR AU - Hermann König AU - Vitali Milman TI - The extended Leibniz rule and related equations in the space of rapidly decreasing functions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 336 EP - 361 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a4/ LA - en ID - JMAG_2018_14_3_a4 ER -
%0 Journal Article %A Hermann König %A Vitali Milman %T The extended Leibniz rule and related equations in the space of rapidly decreasing functions %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2018 %P 336-361 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a4/ %G en %F JMAG_2018_14_3_a4
Hermann König; Vitali Milman. The extended Leibniz rule and related equations in the space of rapidly decreasing functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 336-361. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a4/
[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, 1966 | MR | Zbl
[2] S. Alesker, S. Artstein-Avidan, D. Faifman, V. Milman, “A characterization of product preserving maps with applications to a characterization of the Fourier transform”, Illinois J. Math., 54 (2010), 1115–1132 | MR | Zbl
[3] S. Alesker, S. Artstein-Avidan, V. Milman, “A characterization of the Fourier transform and related topics”, Linear and complex analysis, Dedicated to V. P. Havin, Amer. Math. Soc. Transl., 226, eds. A. Alexandrov et al. ; Advances in the Math. Sciences, 63, 2009, 11–26 | MR | Zbl
[4] S. Artstein-Avidan, D. Faifman, V. Milman, “On multiplicative maps of continuous and smooth functions”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 2050, Springer, Heidelberg, 2012, 35–59 | DOI | MR | Zbl
[5] S. Artstein-Avidan, H. König, V. Milman, “The chain rule as a functional equation”, J. Funct. Anal., 259 (2010), 2999–3024 | DOI | MR | Zbl
[6] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983 | MR
[7] H. König, V. Milman, “Characterizing the derivative and the entropy function by the Leibniz rule”, with an appendix by D. Faifman, J. Funct. Anal., 261 (2011), 1325–1344 | DOI | MR | Zbl
[8] A. N. Milgram, “Multiplicative semigroups of continuous functions”, Duke Math. J., 16 (1949), 377–383 | DOI | MR | Zbl
[9] J. Mrčun, “On isomorphisms of algebras of smooth functions”, Proc. Amer. Math. Soc., 133 (2005), 3109–3113 | DOI | MR | Zbl
[10] J. Mrčun, P. Šemrl, “Multplicative bijections between algebras of differentiable functions”, Ann. Acad. Sci. Fenn. Math., 32 (2007), 471–480 | MR
[11] E. Shustin, private communication
[12] M. Sodin, private communication