Construction of KdV flow I. $\tau$-Function via Weyl function
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 297-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sato introduced the $\tau$-function to describe solutions to a wide class of completely integrable differential equations. Later Segal–Wilson represented it in terms of the relevant integral operators on Hardy space of the unit disc. This paper gives another representation of the $\tau$-functions by the Weyl functions for 1d Schrödinger operators with real valued potentials, which will make it possible to extend the class of initial data for the KdV equation to more general one.
@article{JMAG_2018_14_3_a3,
     author = {S. Kotani},
     title = {Construction of {KdV} {flow~I.} $\tau${-Function} via {Weyl} function},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {297--335},
     year = {2018},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a3/}
}
TY  - JOUR
AU  - S. Kotani
TI  - Construction of KdV flow I. $\tau$-Function via Weyl function
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 297
EP  - 335
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a3/
LA  - en
ID  - JMAG_2018_14_3_a3
ER  - 
%0 Journal Article
%A S. Kotani
%T Construction of KdV flow I. $\tau$-Function via Weyl function
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 297-335
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a3/
%G en
%F JMAG_2018_14_3_a3
S. Kotani. Construction of KdV flow I. $\tau$-Function via Weyl function. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 297-335. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a3/

[1] E. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw–Hill Book Company, Inc., New York–Toronto–London, 1955 | MR | Zbl

[2] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “A method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | MR

[3] F. Gesztesy, W. Karwowski, Z. Zhao, “Limits of soliton solutions”, Duke Math. J., 68 (1992), 101–150 | DOI | MR | Zbl

[4] R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27 (1971), 1192 | DOI | Zbl

[5] R. Johnson, “On the Sato–Segal–Wilson solutions of the KdV equation”, Pacific J. Math., 132 (1988), 343–355 | DOI | MR | Zbl

[6] R. Johnson, J. Moser, “The rotation number for almost periodic potentials”, Comm. Math. Phys., 84 (1982), 403–438 | DOI | MR | Zbl

[7] S. Kotani, “KdV flow on generalized reflectionless potentials”, Zh. Mat. Fiz. Anal. Geom., 4 (2008), 490–528 | MR | Zbl

[8] P. Lax, “Integrals of non-linear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[9] J. Soviet Math., 48 (1990), 290–297 | DOI | MR | Zbl

[10] V. A. Marchenko, Sturm–Liouville Operators and Applications, Revised Edition, AMS Chelsea Publ., Providence, RI, 2011 | MR | Zbl

[11] V. A. Marchenko, “The Cauchy problem for the KdV equation with non-decreasing initial data”, What is Integrability?, Springer Series in Nonlinear Dynamics, ed. V. E. Zakharov, Springer, Berlin, 273–318 | MR | Zbl

[12] J. Moser, Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 1983 | MR

[13] M. Sato, “Soliton equations as dynamical systems on an infinite dimensional grassmann manifolds”, Suriken Koukyuroku, 439 (1981), 30–46 http://hdl.handle.net/2433/102800 | Zbl

[14] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61, 1985, 5–65 | DOI | MR | Zbl