@article{JMAG_2018_14_3_a2,
author = {Vadim Gorin and Sasha Sodin},
title = {The {KPZ} equation and moments of random matrices},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {286--296},
year = {2018},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a2/}
}
Vadim Gorin; Sasha Sodin. The KPZ equation and moments of random matrices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 286-296. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a2/
[1] G. Amir, I. Corwin, J. Quastel, “Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions”, Comm. Pure Appl. Math., 64 (2011), 466–537 | DOI | MR | Zbl
[2] T. Alberts, K. Khanin, J. Quastel, “The continuum directed random polymer”, J. Stat. Phys., 154 (2014), 305–326 | DOI | MR | Zbl
[3] T. Alberts, K. Khanin, J. Quastel, “The intermediate disorder regime for directed polymers in dimension 1 + 1”, Ann. Probab., 42 (2014), 1212–1256 | DOI | MR | Zbl
[4] G. Barraquand, A. Borodin, I. Corwin, M. Wheeler, “Stochastic six-vertex model in a half-quadrant and half-line open ASEP”, Duke Math. J. (to appear) , arXiv: 1704.04309 | MR
[5] A. Borodin, V. Gorin, “Moments match between the KPZ equation and the Airy point process”, SIGMA Symmetry Integrability Geom. Methods Appl., 12 (2016), 102, 7 pp. | MR | Zbl
[6] P. Bourgade, H.-T. Yau, “The eigenvector moment flow and local quantum unique ergodicity”, Commun. Math. Phys., 350 (2017), 231–278 | DOI | MR | Zbl
[7] P. Calabrese, P. Le Doussal, A. Rosso, “Free-energy distribution of the directed polymer at high temperature”, Euro. Phys. Lett., 90:2 (2010), 20002 | DOI
[8] I. Corwin, “The Kardar–Parisi–Zhang equation and universality class”, Random Matr. Theory Appl., 1:1 (2012), 1130001, arXiv: 1106.1596 | DOI | MR | Zbl
[9] P. Diaconis, D. Freedman, “A dozen de Finetti-style results in search of a theory”, Ann. Inst. H. Poincaré Probab. Statist., 23:2, suppl. (1987), 397–423 | MR | Zbl
[10] P. Diaconis, E. Morris, S. Lauritzen, “Finite De Finetti theorems in linear models and multivariate analysis”, Scandinavian Journal of Statistics, 19 (1992), 289–315 | MR | Zbl
[11] P.A. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999 | MR
[12] P. Deift, D. Gioev, “Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices”, Comm. Pure Appl. Math., 60 (2007), 867–910 | DOI | MR | Zbl
[13] V. Dotsenko, “Bethe ansatz derivation of the Tracy–Widom distribution for one-dimensional directed polymers”, Euro. Phys. Lett., 90 (2010), 20003 | DOI | MR
[14] I. Dumitriu, A. Edelman, “Matrix models for beta ensembles”, J. Math. Phys., 43 (2002), 5830–5847 | DOI | MR | Zbl
[15] P.J. Forrester, “The spectral edge of random matrix ensembles”, Nucl. Phys. B, 402 (1994), 709–728 | DOI | MR
[16] P. J. Forrester, Log-gases and Random Matrices, Princeton University Press, Princeton, 2010 | MR | Zbl
[17] V. Gorin, M. Shkolnikov, “Stochastic Airy semigroup through tridiagonal matrices”, Ann. Probab., 46 (2018), 2287–2344 | DOI | MR | Zbl
[18] P. Gonçalves, M. Jara, “Nonlinear fluctuations of weakly asymmetric interacting particle systems”, Arch. Rational Mech. Anal., 212 (2014), 597–644 | DOI | MR | Zbl
[19] M. Gubinelli, N. Perkowski, “KPZ Reloaded”, Commun. Math. Phys., 349 (2017), 165–269, arXiv: 1508.03877 | DOI | MR | Zbl
[20] M. Gubinelli, N. Perkowski, “Energy solutions of KPZ are unique”, J. Amer. Math. Soc., 31 (2018), 427–471, arXiv: 1508.07764 | DOI | MR | Zbl
[21] M. Hairer, “Solving the KPZ equation”, Annals of Mathematics, 178 (2013), 559–664 | DOI | MR | Zbl
[22] M. Kardar, G. Parisi, Y. C. Zhang, “Dynamic scaling of growing interfaces”, Phys. Rev. Lett., 56 (1986), 889–892 | DOI | Zbl
[23] A. Knowles, J. Yin, “Eigenvector distribution of Wigner matrices”, Probab. Theory Related Fields, 155 (2013), 543–582 | DOI | MR | Zbl
[24] J. O. Lee, J. Yin, “A necessary and sufficient condition for edge universality of Wigner matrices”, Duke Math. J., 163 (2014), 117–173 | DOI | MR | Zbl
[25] G. Olshanski, A. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary Mathematical Physics, F. A. Berezin's memorial volume, Amer. Math. Transl. Ser. 2, 175, eds. R. L. Dobrushin et al., 1996, 137–175, arXiv: math/9601215 | MR | Zbl
[26] S. Parekh, “The KPZ Limit of ASEP with Boundary”, Commun. Math. Phys. (to appear) , arXiv: 1711.05297 | MR
[27] L. Pastur, M. Shcherbina, “On the edge universality of the local eigenvalue statistics of matrix models”, Mat. Fiz. Anal. Geom., 10 (2003), 335–365 | MR | Zbl
[28] L. Pastur, M. Shcherbina, Eigenvalue distribution of large random matrices, Mathematical Surveys and Monographs, 171, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[29] J. A. Ramírez, B. Rider, B. Virág, “Beta ensembles, stochastic Airy spectrum, and a diffusion”, J. Amer. Math. Soc., 24 (2011), 919–944 | DOI | MR | Zbl
[30] J. Quastel, H. Spohn, “The one-dimensional KPZ equation and its universality”, J. Stat. Phys., 160 (2015), 965–984 | DOI | MR | Zbl
[31] T. Sasamoto, H. Spohn, “One-dimensional Kardar–Parisi–Zhang equation: an exact solution and its universality”, Phys. Rev. Lett., 104 (2010), 230602 | DOI
[32] A. Soshnikov, “Universality at the edge of the spectrum in Wigner random matrices”, Commun. Math. Phys., 207 (1999), 697–733 | DOI | MR | Zbl
[33] T. Tao, V. Vu, “Random matrices: universal properties of eigenvectors”, Random Matrices Theory Appl., 1:1 (2012), 1150001 | DOI | MR | Zbl
[34] C. Tracy, H. Widom, “Level-spacing distribution and Airy kernel”, Commun. Math. Phys., 159 (1994), 151–174 | DOI | MR | Zbl
[35] C. Tracy, H. Widom, “On orthogonal and symplectic matrix ensembles”, Commun. Math. Phys., 177 (1996), 727–754 | DOI | MR | Zbl