Gap control by singular Schrödinger operators in a periodically structured metamaterial
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 270-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a family $\{\mathcal{H}^\varepsilon\}_{\varepsilon>0}$ of $\varepsilon\mathbb{Z}^n$-periodic Schrödinger operators with $\delta'$-interactions supported on a lattice of closed compact surfaces; within a minimum period cell one has $m\in\mathbb{N}$ surfaces. We show that in the limit when $\varepsilon\to 0$ and the interactions strengths are appropriately scaled, $\mathcal{H}^\varepsilon$ has at most $m$ gaps within finite intervals, and moreover, the limiting behavior of the first $m$ gaps can be completely controlled through a suitable choice of those surfaces and of the interactions strengths.
@article{JMAG_2018_14_3_a1,
     author = {Pavel Exner and Andrii Khrabustovskyi},
     title = {Gap control by singular {Schr\"odinger} operators in a periodically structured metamaterial},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {270--285},
     year = {2018},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a1/}
}
TY  - JOUR
AU  - Pavel Exner
AU  - Andrii Khrabustovskyi
TI  - Gap control by singular Schrödinger operators in a periodically structured metamaterial
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 270
EP  - 285
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a1/
LA  - en
ID  - JMAG_2018_14_3_a1
ER  - 
%0 Journal Article
%A Pavel Exner
%A Andrii Khrabustovskyi
%T Gap control by singular Schrödinger operators in a periodically structured metamaterial
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 270-285
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a1/
%G en
%F JMAG_2018_14_3_a1
Pavel Exner; Andrii Khrabustovskyi. Gap control by singular Schrödinger operators in a periodically structured metamaterial. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 270-285. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a1/

[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, 2nd edition, Amer. Math. Soc. Chelsea Publishing, Providence, R.I., 2005 | MR

[2] D. Barseghyan, A. Khrabustovskyi, “Gaps in the spectrum of a periodic quantum graph with periodically distributed $\delta'$-type interactions”, J. Phys. A: Math. Theor., 48 (2015), 255201 | DOI | MR | Zbl

[3] J. Behrndt, P. Exner, V. Lotoreichik, “Schrödinger operators with $\delta$- and $\delta'$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26 (2014), 1450015 | DOI | MR | Zbl

[4] J. Behrndt, M. Langer, V. Lotoreichik, “Schrödinger operators with $\delta$ and $\delta'$-potentials supported on hypersurfaces”, Ann. Henri Poincaré, 14 (2013), 385–423 | DOI | MR | Zbl

[5] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Amer. Math. Soc., Providence, R.I., 2013 | MR | Zbl

[6] B.M. Brown, V. Hoang, M. Plum, I. G. Wood, “Floquet–Bloch theory for elliptic problems with discontinuous coefficients”, Spectral theory and analysis, Oper. Theory Adv. Appl., 214, Birkhäuser, Basel, 2011, 1–20 | MR

[7] P. Exner, A. Khrabustovskyi, “On the spectrum of narrow Neumann waveguide with periodically distributed $\delta'$ traps”, J. Phys. A: Math. Theor., 48 (2015), 315301 | DOI | MR | Zbl

[8] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54 (2005), 77–115 | DOI | MR | Zbl

[9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966 | MR | Zbl

[10] A. Khrabustovskyi, “Opening up and control of spectral gaps of the Laplacian in periodic domains”, J. Math. Phys., 55 (2014), 121502 | DOI | MR | Zbl

[11] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993 | MR | Zbl

[12] M. Reed, B. Simon, IV: Analysis of Operators, Methods of Modern Mathematical Physics, Academic Press, New York–London, 1978 | MR | Zbl

[13] B. Simon, “A canonical decomposition for quadratic forms with applications to monotone convergence theorems”, J. Funct. Anal., 28 (1978), 377–385 | DOI | MR | Zbl