@article{JMAG_2018_14_3_a1,
author = {Pavel Exner and Andrii Khrabustovskyi},
title = {Gap control by singular {Schr\"odinger} operators in a periodically structured metamaterial},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {270--285},
year = {2018},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a1/}
}
TY - JOUR AU - Pavel Exner AU - Andrii Khrabustovskyi TI - Gap control by singular Schrödinger operators in a periodically structured metamaterial JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 270 EP - 285 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a1/ LA - en ID - JMAG_2018_14_3_a1 ER -
%0 Journal Article %A Pavel Exner %A Andrii Khrabustovskyi %T Gap control by singular Schrödinger operators in a periodically structured metamaterial %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2018 %P 270-285 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a1/ %G en %F JMAG_2018_14_3_a1
Pavel Exner; Andrii Khrabustovskyi. Gap control by singular Schrödinger operators in a periodically structured metamaterial. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 270-285. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a1/
[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, 2nd edition, Amer. Math. Soc. Chelsea Publishing, Providence, R.I., 2005 | MR
[2] D. Barseghyan, A. Khrabustovskyi, “Gaps in the spectrum of a periodic quantum graph with periodically distributed $\delta'$-type interactions”, J. Phys. A: Math. Theor., 48 (2015), 255201 | DOI | MR | Zbl
[3] J. Behrndt, P. Exner, V. Lotoreichik, “Schrödinger operators with $\delta$- and $\delta'$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26 (2014), 1450015 | DOI | MR | Zbl
[4] J. Behrndt, M. Langer, V. Lotoreichik, “Schrödinger operators with $\delta$ and $\delta'$-potentials supported on hypersurfaces”, Ann. Henri Poincaré, 14 (2013), 385–423 | DOI | MR | Zbl
[5] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Amer. Math. Soc., Providence, R.I., 2013 | MR | Zbl
[6] B.M. Brown, V. Hoang, M. Plum, I. G. Wood, “Floquet–Bloch theory for elliptic problems with discontinuous coefficients”, Spectral theory and analysis, Oper. Theory Adv. Appl., 214, Birkhäuser, Basel, 2011, 1–20 | MR
[7] P. Exner, A. Khrabustovskyi, “On the spectrum of narrow Neumann waveguide with periodically distributed $\delta'$ traps”, J. Phys. A: Math. Theor., 48 (2015), 315301 | DOI | MR | Zbl
[8] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54 (2005), 77–115 | DOI | MR | Zbl
[9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966 | MR | Zbl
[10] A. Khrabustovskyi, “Opening up and control of spectral gaps of the Laplacian in periodic domains”, J. Math. Phys., 55 (2014), 121502 | DOI | MR | Zbl
[11] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993 | MR | Zbl
[12] M. Reed, B. Simon, IV: Analysis of Operators, Methods of Modern Mathematical Physics, Academic Press, New York–London, 1978 | MR | Zbl
[13] B. Simon, “A canonical decomposition for quadratic forms with applications to monotone convergence theorems”, J. Funct. Anal., 28 (1978), 377–385 | DOI | MR | Zbl