Inverse scattering on the half line for the matrix Schrödinger equation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 237-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The matrix Schrödinger equation is considered on the half line with the general selfadjoint boundary condition at the origin described by two boundary matrices satisfying certain appropriate conditions. It is assumed that the matrix potential is integrable, is selfadjoint, and has a finite first moment. The corresponding scattering data set is constructed, and such scattering data sets are characterized by providing a set of necessary and sufficient conditions assuring the existence and uniqueness of the one-to-one correspondence between the scattering data set and the input data set containing the potential and boundary matrices. The work presented here provides a generalization of the classic result by Agranovich and Marchenko from the Dirichlet boundary condition to the general selfadjoint boundary condition.
@article{JMAG_2018_14_3_a0,
     author = {Tuncay Aktosun and Ricardo Weder},
     title = {Inverse scattering on the half line for the matrix {Schr\"odinger} equation},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {237--269},
     year = {2018},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a0/}
}
TY  - JOUR
AU  - Tuncay Aktosun
AU  - Ricardo Weder
TI  - Inverse scattering on the half line for the matrix Schrödinger equation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 237
EP  - 269
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a0/
LA  - en
ID  - JMAG_2018_14_3_a0
ER  - 
%0 Journal Article
%A Tuncay Aktosun
%A Ricardo Weder
%T Inverse scattering on the half line for the matrix Schrödinger equation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 237-269
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a0/
%G en
%F JMAG_2018_14_3_a0
Tuncay Aktosun; Ricardo Weder. Inverse scattering on the half line for the matrix Schrödinger equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 237-269. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a0/

[1] Z.S. Agranovich, V. A. Marchenko, The Inverse Problem of Scattering Theory, Gordon and Breach, New York, 1963 | MR | Zbl

[2] T. Aktosun, M. Klaus, “Inverse theory: problem on the line”, Scattering, Chapter 2.2.4, eds. E. R. Pike, P. C. Sabatier, Academic Press, London, 2001, 770–785 | MR

[3] T. Aktosun, M. Klaus, C. van der Mee, “Small-energy asymptotics for the Schrödinger equation on the line”, J. Math. Phys., 17 (2001), 619–632 | MR | Zbl

[4] T. Aktosun, M. Klaus, R. Weder, “Small-energy analysis for the self-adjoint matrix Schrödinger operator on the half line”, J. Math. Phys., 52 (2011), 102101 | DOI | MR | Zbl

[5] T. Aktosun, M. Klaus, R. Weder, “Small-energy analysis for the self-adjoint matrix Schrödinger operator on the half line. II”, J. Math. Phys., 55 (2014), 032103, arXiv: 1310.4809 | DOI | MR | Zbl

[6] T. Aktosun, P. Sacks, M. Unlu, “Inverse problems for selfadjoint Schrödinger operators on the half line with compactly supported potentials”, J. Math. Phys., 56 (2015), 022106, arXiv: 1409.5819 | DOI | MR | Zbl

[7] T. Aktosun, R. Weder, “Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation”, Inverse Problems, 22 (2006), 89–114, arXiv: math-ph/0402019 | DOI | MR | Zbl

[8] T. Aktosun, R. Weder, “High-energy analysis and Levinson's theorem for the self-adjoint matrix Schrödinger operator on the half line”, J. Math. Phys., 54 (2013), 112108, arXiv: 1206.2986 | DOI | MR

[9] T. Aktosun, R. Weder, Inverse scattering for the matrix Schrödinger equation, 2018, arXiv: 1708.03837 | MR

[10] T. Aktosun, R. Weder, Direct and Inverse Scattering for the Matrix Schrödinger Equation, Springer-Verlag (to appear)

[11] K. Chadan, P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed., Springer, New York, 1989 | MR | Zbl

[12] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Commun. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl

[13] L. D. Faddeev, “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Amer. Math. Soc. Transl., Ser. 2, 65 (1967), 139–166 | Zbl

[14] M. S. Harmer, “Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions”, ANZIAM J., 44 (2002), 161–168 | DOI | MR | Zbl

[15] M. S. Harmer, The Matrix Schrödinger Operator and Schrödinger Operator on Graphs, Ph.D. thesis, University of Auckland, New Zealand, 2004

[16] M. Harmer, “Inverse scattering on matrices with boundary conditions”, J. Phys. A, 38 (2005), 4875–4885 | DOI | MR | Zbl

[17] V. Kostrykin, R. Schrader, “Kirchhoff's rule for quantum wires”, J. Phys. A, 32 (1999), 595–630 | DOI | MR | Zbl

[18] V. Kostrykin, R. Schrader, “Kirchhoff's rule for quantum wires. II: The inverse problem with possible applications to quantum computers”, Fortschr. Phys., 48 (2000), 703–716 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[19] B. M. Levitan, Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, 1987 | MR | Zbl

[20] V. A. Marchenko, Sturm–Liouville Operators and Applications, revised ed., Amer. Math. Soc. Chelsea Publ., Providence, R.I., 2011 | MR

[21] R. G. Newton, R. Jost, “The construction of potentials from the $S$-matrix for systems of differential equations”, Nuovo Cim., 1 (1955), 590–622 | DOI | MR | Zbl

[22] R. Weder, “Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions”, J. Math. Phys., 56 (2015), 092103, arXiv: 1505.01879 | DOI | MR | Zbl

[23] R. Weder, “Trace formulas for the matrix Schrödinger operator on the half-line with general boundary conditions”, J. Math. Phys., 57 (2016), 112101, arXiv: 1603.09432 | DOI | MR | Zbl

[24] R. Weder, “The number of eigenvalues of the matrix Schrödinger operator on the half line with general boundary conditions”, J. Math. Phys., 58 (2017), 102107, arXiv: 1705.03157 | DOI | MR | Zbl