@article{JMAG_2018_14_3_a0,
author = {Tuncay Aktosun and Ricardo Weder},
title = {Inverse scattering on the half line for the matrix {Schr\"odinger} equation},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {237--269},
year = {2018},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a0/}
}
TY - JOUR AU - Tuncay Aktosun AU - Ricardo Weder TI - Inverse scattering on the half line for the matrix Schrödinger equation JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 237 EP - 269 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a0/ LA - en ID - JMAG_2018_14_3_a0 ER -
Tuncay Aktosun; Ricardo Weder. Inverse scattering on the half line for the matrix Schrödinger equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 3, pp. 237-269. http://geodesic.mathdoc.fr/item/JMAG_2018_14_3_a0/
[1] Z.S. Agranovich, V. A. Marchenko, The Inverse Problem of Scattering Theory, Gordon and Breach, New York, 1963 | MR | Zbl
[2] T. Aktosun, M. Klaus, “Inverse theory: problem on the line”, Scattering, Chapter 2.2.4, eds. E. R. Pike, P. C. Sabatier, Academic Press, London, 2001, 770–785 | MR
[3] T. Aktosun, M. Klaus, C. van der Mee, “Small-energy asymptotics for the Schrödinger equation on the line”, J. Math. Phys., 17 (2001), 619–632 | MR | Zbl
[4] T. Aktosun, M. Klaus, R. Weder, “Small-energy analysis for the self-adjoint matrix Schrödinger operator on the half line”, J. Math. Phys., 52 (2011), 102101 | DOI | MR | Zbl
[5] T. Aktosun, M. Klaus, R. Weder, “Small-energy analysis for the self-adjoint matrix Schrödinger operator on the half line. II”, J. Math. Phys., 55 (2014), 032103, arXiv: 1310.4809 | DOI | MR | Zbl
[6] T. Aktosun, P. Sacks, M. Unlu, “Inverse problems for selfadjoint Schrödinger operators on the half line with compactly supported potentials”, J. Math. Phys., 56 (2015), 022106, arXiv: 1409.5819 | DOI | MR | Zbl
[7] T. Aktosun, R. Weder, “Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation”, Inverse Problems, 22 (2006), 89–114, arXiv: math-ph/0402019 | DOI | MR | Zbl
[8] T. Aktosun, R. Weder, “High-energy analysis and Levinson's theorem for the self-adjoint matrix Schrödinger operator on the half line”, J. Math. Phys., 54 (2013), 112108, arXiv: 1206.2986 | DOI | MR
[9] T. Aktosun, R. Weder, Inverse scattering for the matrix Schrödinger equation, 2018, arXiv: 1708.03837 | MR
[10] T. Aktosun, R. Weder, Direct and Inverse Scattering for the Matrix Schrödinger Equation, Springer-Verlag (to appear)
[11] K. Chadan, P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed., Springer, New York, 1989 | MR | Zbl
[12] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Commun. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl
[13] L. D. Faddeev, “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Amer. Math. Soc. Transl., Ser. 2, 65 (1967), 139–166 | Zbl
[14] M. S. Harmer, “Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions”, ANZIAM J., 44 (2002), 161–168 | DOI | MR | Zbl
[15] M. S. Harmer, The Matrix Schrödinger Operator and Schrödinger Operator on Graphs, Ph.D. thesis, University of Auckland, New Zealand, 2004
[16] M. Harmer, “Inverse scattering on matrices with boundary conditions”, J. Phys. A, 38 (2005), 4875–4885 | DOI | MR | Zbl
[17] V. Kostrykin, R. Schrader, “Kirchhoff's rule for quantum wires”, J. Phys. A, 32 (1999), 595–630 | DOI | MR | Zbl
[18] V. Kostrykin, R. Schrader, “Kirchhoff's rule for quantum wires. II: The inverse problem with possible applications to quantum computers”, Fortschr. Phys., 48 (2000), 703–716 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[19] B. M. Levitan, Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, 1987 | MR | Zbl
[20] V. A. Marchenko, Sturm–Liouville Operators and Applications, revised ed., Amer. Math. Soc. Chelsea Publ., Providence, R.I., 2011 | MR
[21] R. G. Newton, R. Jost, “The construction of potentials from the $S$-matrix for systems of differential equations”, Nuovo Cim., 1 (1955), 590–622 | DOI | MR | Zbl
[22] R. Weder, “Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions”, J. Math. Phys., 56 (2015), 092103, arXiv: 1505.01879 | DOI | MR | Zbl
[23] R. Weder, “Trace formulas for the matrix Schrödinger operator on the half-line with general boundary conditions”, J. Math. Phys., 57 (2016), 112101, arXiv: 1603.09432 | DOI | MR | Zbl
[24] R. Weder, “The number of eigenvalues of the matrix Schrödinger operator on the half line with general boundary conditions”, J. Math. Phys., 58 (2017), 102107, arXiv: 1705.03157 | DOI | MR | Zbl