Non-differentiable functions defined in terms of classical representations of real numbers
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 197-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is devoted to the functions from a certain subclass of non-differentiable functions. The arguments and values of the considered functions are represented by the $s$-adic representation or the nega-$s$-adic representation of real numbers. The technique of modeling these functions is the simplest as compared with the well-known techniques of modeling non-differentiable functions. In other words, the values of these functions are obtained from the $s$-adic or nega-$s$-adic representation of the argument by a certain change of digits or combinations of digits. Integral, fractal and other properties of the functions are described.
@article{JMAG_2018_14_2_a5,
     author = {S. O. Serbenyuk},
     title = {Non-differentiable functions defined in terms of classical representations of real numbers},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {197--213},
     year = {2018},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a5/}
}
TY  - JOUR
AU  - S. O. Serbenyuk
TI  - Non-differentiable functions defined in terms of classical representations of real numbers
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 197
EP  - 213
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a5/
LA  - en
ID  - JMAG_2018_14_2_a5
ER  - 
%0 Journal Article
%A S. O. Serbenyuk
%T Non-differentiable functions defined in terms of classical representations of real numbers
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 197-213
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a5/
%G en
%F JMAG_2018_14_2_a5
S. O. Serbenyuk. Non-differentiable functions defined in terms of classical representations of real numbers. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 197-213. http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a5/

[1] V. F. Brzhechka, “On the Bolzano function”, Uspekhi Mat. Nauk, 4 (1949), 15–21 (Russian) | MR

[2] E. Kel'man, Bernard Bolzano, Izd-vo AN SSSR, M., 1955 (Russian) | MR

[3] G. H. Hardy, “Weierstrass's non-differentiable function”, Trans. Amer. Math. Soc., 17 (1916), 301–325 | MR | Zbl

[4] J. Gerver, “More on the differentiability of the Rieman function”, Amer. J. Math., 93 (1971), 33–41 | DOI | MR | Zbl

[5] P. Du Bois-Reymond, “Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen”, J. Reine Angew. Math., 79 (1875), 21–37 (German) | MR

[6] G. Darboux, “Mémoire sur les fonctions discontinues”, Ann. Sci. École Norm. Sup., 4 (1875), 57–112 (French) | DOI | MR

[7] G. Darboux, “Addition au mémoire sur les fonctions discontinues”, Ann. Sci. École Norm. Sup., 8 (1879), 195–202 (French) | DOI | MR

[8] W. Orlicz, “Sur les fonctions continues non dérivables”, Fund. Math., 34 (1947), 45–60 (French) | DOI | MR | Zbl

[9] U. Dini, Fondamenti per la teoretica delle funzioni de variabili reali, Tipografia T. Nistri e C., Pisa, 1878 (Italian)

[10] H. Hankel, Untersuchungen über die unendlich oft oscillirenden und unstetigen Functionen, Ludwig Friedrich Fues, Tübingen, 1870 (German)

[11] S. Banach, “Uber die Baire'sche Kategorie gewisser Funktionenmengen”, Studia Math., 3 (1931), 174–179 (German) | DOI

[12] A.S. Besicovitch, “Investigation of continuous functions in connection with the question of their differentiability”, Mat. Sb., 31 (1924), 529–556 (Russian)

[13] S. Mazurkiewicz, “Sur les fonctions non dérivables”, Studia Math., 3 (1931), 92–94 (French) | DOI

[14] S. Saks, “On the functions of Besicovitch in the space of continuous functions”, Fund. Math., 19 (1932), 211–219 | DOI

[15] K. A. Bush, “Continuous functions without derivatives”, Amer. Math. Monthly, 59 (1952), 222–225 | DOI | MR | Zbl

[16] G. Cantor, “Ueber die einfachen Zahlensysteme”, Z. Math. Phys., 14 (1869), 121–128 (German)

[17] R. Salem, “On some singular monotonic functions which are stricly increasing”, Trans. Amer. Math. Soc., 53 (1943), 423–439 | DOI | MR

[18] S.O. Serbenyuk, “On one nearly everywhere continuous and nowhere differentiable function, that defined by automaton with finite memory”, Naukovyi Chasopys NPU im. M.P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky, 13 (2012), 166–182 (Ukrainian) https://www.researchgate.net/publication/292970012

[19] S. O. Serbenyuk, On one nearly everywhere continuous and nowhere differentiable function defined by automaton with finite memory, Conference abstract, 2012 (Ukrainian) https://www.researchgate.net/publication/311665377

[20] S. O. Serbenyuk, On one nearly everywhere continuous and almost nowhere differentiable function, that defined by automaton with finite memory and preserves the Hausdorff-Besicovitch dimension, preprint, 2012 (Ukrainian) https://www.researchgate.net/publication/314409844

[21] S. O. Serbenyuk, On one generalization of functions defined by automatons with finite memory, Conference abstract, 2013 (Ukrainian) https://www.researchgate.net/publication/311414454

[22] S. Serbenyuk, On two functions with complicated local structure, Conference abstract, 2013 https://www.researchgate.net/publication/311414256

[23] Symon Serbenyuk, Representation of real numbers by the alternating Cantor series, slides of talk, 2013 (Ukrainian) https://www.researchgate.net/publication/303720347

[24] Symon Serbenyuk, Representation of real numbers by the alternating Cantor series, preprint, 2013 (Ukrainian) https://www.researchgate.net/publication/316787375

[25] Symon Serbenyuk, Defining by functional equations systems of one class of functions, whose argument defined by the Cantor series, conference talk, 2014 (Ukrainian) https://www.researchgate.net/publication/314426236

[26] Symon Serbenyuk, Applications of positive and alternating Cantor series, slides of talk, 2014 (Ukrainian) https://www.researchgate.net/publication/303736670

[27] S. O. Serbenyuk, Defining by functional equations systems of one class a functions, whose arguments defined by the Cantor series, conference abstract, 2014 (Ukrainian) https://www.researchgate.net/publication/311415359

[28] S. O. Serbenyuk, “Functions, that defined by functional equations systems in terms of Cantor series representation of numbers”, Naukovi Zapysky NaUKMA, 165 (2015), 34–40 (Ukrainian) https://www.researchgate.net/publication/292606546

[29] S. O. Serbenyuk, Nega-$\tilde Q$-representation of real numbers, conference abstract, 2015 https://www.researchgate.net/publication/311415381

[30] S. O. Serbenyuk, On one function, that defined in terms of the nega-$\tilde Q$-representation, from a class of functions with complicated local structure, conference abstract, 2015 (Ukrainian) https://www.researchgate.net/publication/311738798

[31] S. Serbenyuk, “Nega-$\tilde Q$-representation as a generalization of certain alternating representations of real numbers”, Bull. Taras Shevchenko Natl. Univ. Kyiv Math. Mech., 1 (35) (2016), 32–39 (Ukrainian) https://www.researchgate.net/publication/308273000

[32] S. O. Serbenyuk, On one class of functions that are solutions of infinite systems of functional equations, 2016, arXiv: 1602.00493 | MR | Zbl

[33] S. Serbenyuk, “On one class of functions with complicated local structure”, Šiauliai Mathematical Seminar, 11 (19) (2016), 75–88 | Zbl

[34] Symon Serbenyuk, On one nearly everywhere continuous and nowhere differentiable function that defined by automaton with finite memory, 2017, arXiv: 1703.02820

[35] S. O. Serbenyuk, “Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers”, Zh. Mat. Fiz. Anal. Geom., 13 (2017), 57–81 | DOI | MR | Zbl

[36] S. Serbenyuk, “Representation of real numbers by the alternating Cantor series”, Integers, 17 (2017), A15, 27 pp. | MR

[37] K. Weierstrass, “Über continuierliche Functionen eines reellen Argumentes, die für keinen Werth des letzeren einen bestimmten Differentialquotienten besitzen”, Math. Werke, 2 (1895), 71–74 (German)

[38] W. Wunderlich, “Eine überall stetige und nirgends differenzierbare Funktion”, Elemente der Math., 7 (1952), 73–79 (German) | MR | Zbl