@article{JMAG_2018_14_2_a4,
author = {Maria S. Filipkovska},
title = {Lagrange stability of semilinear differential-algebraic equations and application to nonlinear electrical circuits},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {169--196},
year = {2018},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a4/}
}
TY - JOUR AU - Maria S. Filipkovska TI - Lagrange stability of semilinear differential-algebraic equations and application to nonlinear electrical circuits JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 169 EP - 196 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a4/ LA - en ID - JMAG_2018_14_2_a4 ER -
%0 Journal Article %A Maria S. Filipkovska %T Lagrange stability of semilinear differential-algebraic equations and application to nonlinear electrical circuits %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2018 %P 169-196 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a4/ %G en %F JMAG_2018_14_2_a4
Maria S. Filipkovska. Lagrange stability of semilinear differential-algebraic equations and application to nonlinear electrical circuits. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 169-196. http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a4/
[1] R. Andrzejewski, J. Awrejcewicz, Nonlinear Dynamics of a Wheeled Vehicle, Advances in Mechanics and Mathematics, 10, Springer, New York, NY, 2005 | Zbl
[2] U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1998 | MR | Zbl
[3] A. Bacciotti, L. Rosier, “Liapunov and Lagrange Stability: Inverse Theorems for Discontinuous Systems”, Mathematics of Control, Signals and Systems, 11 (1998), 101–128 | DOI | MR | Zbl
[4] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1996 | MR | Zbl
[5] L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin–Heidelberg, 1989 | DOI | MR | Zbl
[6] M. S. Filipkovska, “Lagrange stability and numerical method for solving semilinear descriptor equations”, Visn. Kharkiv. Nats. Univ. Mat. Model. Inform. Tekh. Avt. Syst. Upr., 26:1156 (2015), 152–167 (Russian)
[7] M. Filipkovskaya, “Global solvability of singular semilinear differential equations and applications to nonlinear radio engineering”, Challenges of Modern Technology, 6 (2015), 3–13
[8] C. W. Gear, L. R. Petzold, “ODE methods for the solution of differential/algebraic systems”, SIAM J. Numer. Anal., 21 (1984), 716–728 | DOI | MR | Zbl
[9] P. Kunkel, V. Mehrmann, Differential-Algebraic Equations. Analysis and Numerical Solution, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2006 | MR | Zbl
[10] J. La Salle, S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Mathematics in Science and Engineering, 4, Academic Press, New York–London, 1961 | MR | Zbl
[11] R. Lamour, R. März, C. Tischendorf, Differential-Algebraic Equations: A Projector Based Analysis, Differential-Algebraic Equations Forum, Springer, Heidelberg, 2013 | MR | Zbl
[12] R. März, “Practical Lyapunov stability criteria for differential algebraic equations”, Numerical Analysis and Mathematical Modelling, Banach Center Publ., 29, Polish Acad. Sci. Inst. Math., Warsaw, 1994, 245–266 | DOI | MR | Zbl
[13] R. E. O'Malley, L. V. Kalachev, “Regularization of nonlinear differential-algebraic equations”, SIAM J. Math. Anal., 25 (1994), 615–629 | DOI | MR | Zbl
[14] P. J. Rabier, W. C. Rheinboldt, “Discontinuous solutions of semilinear differential-algebraic equations. II. $P$-consistency”, Nonlinear Anal., 27 (1996), 1257–1280 | DOI | MR | Zbl
[15] T. Reis, T. Stykel, “Lyapunov balancing for passivity-preserving model reduction of RC circuits”, SIAM J. Appl. Dyn. Syst., 10 (2011), 1–34 | DOI | MR | Zbl
[16] R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008 | MR | Zbl
[17] A. G. Rutkas, “Cauchy problem for the equation $Ax'(t) +Bx(t) = f(t)$”, Differ. Uravn., 11 (1975), 1996–2010 (Russian) | MR | Zbl
[18] A. G. Rutkas, M. S. Filipkovska, “Extension of solutions of one class of differential-algebraic equations”, Zh. Obchysl. Prykl. Mat. (2013, no. 2, 135–145 (Russian) | MR
[19] A. G. Rutkas, L. A. Vlasenko, “Existence, uniqueness and continuous dependence for implicit semilinear functional differential equations”, Nonlinear Anal., 55 (2003), 125–139 | DOI | MR | Zbl
[20] L. Schwartz, Analyse Mathématique, v. I, Hermann, Paris, 1967 (French) | MR
[21] Differ. Equ., 40 (2004), 50–62 | DOI | MR | Zbl
[22] C. Tischendorf, “On the stability of solutions of autonomous index-1 tractable and quasilinear index-2 tractable DAEs”, Circuits Systems Signal Process., 13 (1994), 139–154 | DOI | MR | Zbl
[23] L. A. Vlasenko, Evolution models with implicit and degenerate differential equations, Sistemnye Tekhnologii, Dniepropetrovsk, 2006 (Russian)
[24] A. Wu, Z. Zeng, “Lagrange stability of memristive neural networks with discrete and distributed delays”, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 690–703 | DOI