Nonlinear dynamics of solitons for the vector modified Korteweg–de Vries equation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 153-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The vector generalization of the modified Korteweg–de Vries equation is considered and the inverse scattering transform for solving this equation is developed. The solitons and the breather solutions are constructed and the processes of their interactions are studied. It is shown that along with one-component soliton solutions, there are three-component solutions which have essentially a three-component structure.
@article{JMAG_2018_14_2_a3,
     author = {V. Fenchenko and E. Khruslov},
     title = {Nonlinear dynamics of solitons for the vector modified {Korteweg{\textendash}de} {Vries} equation},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {153--168},
     year = {2018},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a3/}
}
TY  - JOUR
AU  - V. Fenchenko
AU  - E. Khruslov
TI  - Nonlinear dynamics of solitons for the vector modified Korteweg–de Vries equation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 153
EP  - 168
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a3/
LA  - en
ID  - JMAG_2018_14_2_a3
ER  - 
%0 Journal Article
%A V. Fenchenko
%A E. Khruslov
%T Nonlinear dynamics of solitons for the vector modified Korteweg–de Vries equation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 153-168
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a3/
%G en
%F JMAG_2018_14_2_a3
V. Fenchenko; E. Khruslov. Nonlinear dynamics of solitons for the vector modified Korteweg–de Vries equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 153-168. http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a3/

[1] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics, 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981 | MR | Zbl

[2] S. C. Anco, N. T. Ngatat, M. Willoughby, “Interaction properties of complex mKdV solitons”, Phys. D, 240 (2011), 1378–1394 | DOI | MR | Zbl

[3] Ju. M. Balakhnev, A. G. Meshkov, “On a classification of integrable vectorial evolutionary equations”, J. Nonlinear Math. Phys., 15 (2008), 212–226 | DOI | MR | Zbl

[4] F. Calogero, A. Degasperis, Spectral Transform and Solitons, v. I, Studies in Mathematics and its Applications, 13, Tools to Solve and Investigate Nonlinear Evolution Equations ; Lecture Notes in Computer Science, 144, North-Holland Publishing Co., Amsterdam–New York, 1982 | MR | Zbl

[5] P. Drazin, R. S. Johnson, Solitons: an Introduction, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[6] L. D. Faddeev, L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Translated from the Russian by A. G. Reyman, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987 | MR | Zbl

[7] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–deVries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | MR

[8] F. A. Khalilov, E. Ya. Khruslov, “Matrix generalisation of the modified Korteweg–de Vries equation”, Inverse Problems, 6 (1990), 193–204 | DOI | MR | Zbl

[9] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Nonlinear Wave Magnetization. Dynamic and Topological Solitons, Naukova Dumka, Kiev, 1983 (Russian)

[10] G. L. Lamb, Elements of Soliton Theory, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1980 | MR | Zbl

[11] D. C. Mattis, The Theory of Magnetism. II: Thermodynamics and Statistical Mechanics, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985

[12] E. N. Pelinovsky, E. G. Shurgalina, “Two-soliton interaction within the framework of the modified Korteweg–de Vries equation”, Radiophys. Quantum El., 57 (2014), 737–744 | DOI | MR

[13] V. V. Sokolov, T. Wolf, “Classification of integrable polynomial vector evolution equations”, J. Phys. A, 34 (2001), 11139–11148 | DOI | MR | Zbl

[14] Theoret. and Math. Phys., 100 (1994), 959–96 | DOI | MR | Zbl

[15] T. Tsuchida, Multisoliton solutions of the vector nonlinear Schredinger equation (Kulish–Sklyanin model) and the vector mKdV equation, arXiv: 1512.01840

[16] M. Wadati, K. Ohkuma, “Multiple-pole solutions of the modified Korteweg–de Vries equation”, J. Phys. Soc. Jpn., 51 (1982), 2029–2035 | DOI | MR