Surfaces of revolution with vanishing curvature in Galilean 3-space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 141-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, three types of surfaces of revolution in the Galilean 3-space are defined and studied. The construction of the well-known surface of revolution, defined as the trace of a planar curve rotated about an axis in the supporting plane of the curve, is given for the Galilean 3-space. Then we classify the surfaces of revolution with vanishing Gaussian curvature or vanishing mean curvature in the Galilean 3-space.
@article{JMAG_2018_14_2_a2,
     author = {M. Dede and C. Ekici and W. Goemans},
     title = {Surfaces of revolution with vanishing curvature in {Galilean} 3-space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {141--152},
     year = {2018},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a2/}
}
TY  - JOUR
AU  - M. Dede
AU  - C. Ekici
AU  - W. Goemans
TI  - Surfaces of revolution with vanishing curvature in Galilean 3-space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 141
EP  - 152
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a2/
LA  - en
ID  - JMAG_2018_14_2_a2
ER  - 
%0 Journal Article
%A M. Dede
%A C. Ekici
%A W. Goemans
%T Surfaces of revolution with vanishing curvature in Galilean 3-space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 141-152
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a2/
%G en
%F JMAG_2018_14_2_a2
M. Dede; C. Ekici; W. Goemans. Surfaces of revolution with vanishing curvature in Galilean 3-space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 141-152. http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a2/

[1] A. Artykbaev, D. D. Sokolov, Geometry in the Large in a Flat Space-Time, FAN, Tashkent, 1991 (Russian)

[2] M. Dede, “Tubular surfaces in Galilean space”, Math. Commun., 18 (2013), 209–217 | MR | Zbl

[3] M. Dede, C. Ekici, A. Ceylan Çöken, “On the parallel surfaces in Galilean space”, Hacet. J. Math. Stat., 42 (2013), 605–615 | MR | Zbl

[4] M. Dede, C. Ekici, W. Goemans, Y. Ünlütürk, “Twisted surfaces with vanishing curvature in Galilean 3-space”, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850001, 13 pp. | DOI | MR | Zbl

[5] B. Divjak, Ž. Milin Šipuš, “Some special surfaces in the pseudo-Galilean space”, Acta Math. Hungar., 118 (2008), 209–226 | DOI | MR | Zbl

[6] W. Goemans, I. Van de Woestyne, “Twisted surfaces with null rotation axis in Minkowski 3-space”, Results Math., 70 (2016), 81–93 | DOI | MR | Zbl

[7] Ž. Milin Šipuš, “Ruled Weingarten surfaces in Galilean space”, Period. Math. Hungar., 56 (2008), 213–225 | DOI | MR | Zbl

[8] Ž. Milin Šipuš, B. Divjak, “Surfaces of constant curvature in the pseudo-Galilean space”, Int. J. Math. Math. Sci., 2012, 375264, 28 pp. | MR | Zbl

[9] Ž. Milin Šipuš, B. Divjak, “Translation surfaces in the Galilean space”, Glas. Mat. Ser. III, 46(66) (2011), 455–469 | DOI | MR | Zbl

[10] D. Palman, “Drehzykliden des Galileischen Raumes $G_3$”, Math. Pannon., 2(1) (1991), 95–104 | MR | Zbl

[11] O. Röschel, Die Geometrie des Galileischen Raumes, Bericht der Mathematisch-Statistischen Sektion in der Forschungsgesellschaft Joanneum, Bericht Nr. 56, Habilitationsschrift, Leoben, 1984 | MR

[12] I. M. Yaglom, A Simple Non-Euclidean Geometry and its Physical Basis, Springer-Verlag, New York–Heidelberg, 1979 | MR | Zbl

[13] D. W. Yoon, “Surfaces of revolution in the three dimensional pseudo-Galilean space”, Glas. Mat. Ser. III, 48(68) (2013), 415–428 | DOI | MR | Zbl