@article{JMAG_2018_14_2_a2,
author = {M. Dede and C. Ekici and W. Goemans},
title = {Surfaces of revolution with vanishing curvature in {Galilean} 3-space},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {141--152},
year = {2018},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a2/}
}
TY - JOUR AU - M. Dede AU - C. Ekici AU - W. Goemans TI - Surfaces of revolution with vanishing curvature in Galilean 3-space JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 141 EP - 152 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a2/ LA - en ID - JMAG_2018_14_2_a2 ER -
M. Dede; C. Ekici; W. Goemans. Surfaces of revolution with vanishing curvature in Galilean 3-space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 141-152. http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a2/
[1] A. Artykbaev, D. D. Sokolov, Geometry in the Large in a Flat Space-Time, FAN, Tashkent, 1991 (Russian)
[2] M. Dede, “Tubular surfaces in Galilean space”, Math. Commun., 18 (2013), 209–217 | MR | Zbl
[3] M. Dede, C. Ekici, A. Ceylan Çöken, “On the parallel surfaces in Galilean space”, Hacet. J. Math. Stat., 42 (2013), 605–615 | MR | Zbl
[4] M. Dede, C. Ekici, W. Goemans, Y. Ünlütürk, “Twisted surfaces with vanishing curvature in Galilean 3-space”, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850001, 13 pp. | DOI | MR | Zbl
[5] B. Divjak, Ž. Milin Šipuš, “Some special surfaces in the pseudo-Galilean space”, Acta Math. Hungar., 118 (2008), 209–226 | DOI | MR | Zbl
[6] W. Goemans, I. Van de Woestyne, “Twisted surfaces with null rotation axis in Minkowski 3-space”, Results Math., 70 (2016), 81–93 | DOI | MR | Zbl
[7] Ž. Milin Šipuš, “Ruled Weingarten surfaces in Galilean space”, Period. Math. Hungar., 56 (2008), 213–225 | DOI | MR | Zbl
[8] Ž. Milin Šipuš, B. Divjak, “Surfaces of constant curvature in the pseudo-Galilean space”, Int. J. Math. Math. Sci., 2012, 375264, 28 pp. | MR | Zbl
[9] Ž. Milin Šipuš, B. Divjak, “Translation surfaces in the Galilean space”, Glas. Mat. Ser. III, 46(66) (2011), 455–469 | DOI | MR | Zbl
[10] D. Palman, “Drehzykliden des Galileischen Raumes $G_3$”, Math. Pannon., 2(1) (1991), 95–104 | MR | Zbl
[11] O. Röschel, Die Geometrie des Galileischen Raumes, Bericht der Mathematisch-Statistischen Sektion in der Forschungsgesellschaft Joanneum, Bericht Nr. 56, Habilitationsschrift, Leoben, 1984 | MR
[12] I. M. Yaglom, A Simple Non-Euclidean Geometry and its Physical Basis, Springer-Verlag, New York–Heidelberg, 1979 | MR | Zbl
[13] D. W. Yoon, “Surfaces of revolution in the three dimensional pseudo-Galilean space”, Glas. Mat. Ser. III, 48(68) (2013), 415–428 | DOI | MR | Zbl