Ricci solitons on Lorentzian four-dimensional generalized symmetric spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 132-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of non-trivial, i.e., non-Einstein, Ricci solitons on four-dimensional Lorentzian generalized symmetric spaces is proved. Moreover, it is shown that only steady Ricci solitons can be gradient.
@article{JMAG_2018_14_2_a1,
     author = {Amel Bouharis and Bachir Djebbar},
     title = {Ricci solitons on {Lorentzian} four-dimensional generalized symmetric spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {132--140},
     year = {2018},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a1/}
}
TY  - JOUR
AU  - Amel Bouharis
AU  - Bachir Djebbar
TI  - Ricci solitons on Lorentzian four-dimensional generalized symmetric spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 132
EP  - 140
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a1/
LA  - en
ID  - JMAG_2018_14_2_a1
ER  - 
%0 Journal Article
%A Amel Bouharis
%A Bachir Djebbar
%T Ricci solitons on Lorentzian four-dimensional generalized symmetric spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 132-140
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a1/
%G en
%F JMAG_2018_14_2_a1
Amel Bouharis; Bachir Djebbar. Ricci solitons on Lorentzian four-dimensional generalized symmetric spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 132-140. http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a1/

[1] P. Baird, L. Danielo, “Three-dimensional Ricci solitons which project to surfaces”, J. Reine Angew. Math., 608 (2007), 65–91 | MR | Zbl

[2] W. Batat, M. Brozos-Vazquez, E. García-Río, S. Gavino-Fernández, “Ricci solitons on Lorentzian manifolds with large isometry groups”, Bull. Lond. Math. Soc., 43 (2011), 1219–1227 | DOI | MR | Zbl

[3] W. Batat, K. Onda, “Four-dimensional pseudo-Riemannian generalized symmetric spaces which are algebraic Ricci solitons”, Results Math., 64 (2013), 254–267 | DOI | MR

[4] W. Batat, K. Onda, “Ricci and Yamabe solitons on second-order symmetric, and plane wave 4-dimensional Lorentzian manifolds”, J. Geom., 105 (2014), 561–575 | DOI | MR | Zbl

[5] M. Brozos-Vázquez, G. Calvaruso, E. García-Río, S. Gavino-Fernández, “Three-dimensional Lorentzian homogeneous Ricci solitons”, Israel J. Math., 188 (2012), 385–403 | DOI | MR | Zbl

[6] G. Calvaruso, “Oscillator spacetimes are Ricci solitons”, Nonlinear Anal., 140 (2016), 254–269 | DOI | MR | Zbl

[7] G. Calvaruso, B. De Leo, “Curvature properties of four-dimensional generalized symmetric spaces”, J. Geom., 90 (2008), 30–46 | DOI | MR | Zbl

[8] G. Calvaruso, B. De Leo, “Ricci solitons on Lorentzian Walker three-manifolds”, Acta Math. Hungar., 132 (2011), 269–293 | DOI | MR | Zbl

[9] G. Calvaruso, A. Fino, “Four-dimensional pseudo-Riemannian homogeneous Ricci solitons”, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550056, 21 pp. | DOI | MR | Zbl

[10] G. Calvaruso, E. Rosado, “Ricci solitons on low-dimensional generalized symmetric spaces”, J. Geom. Phys., 112 (2017), 106–117 | DOI | MR | Zbl

[11] L.F. Cerbo, “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14 (2014), 225–237 | DOI | MR | Zbl

[12] J. Cerny, O. Kowalski, “Classification of generalized symmetric pseudo-Riemannian spaces of dimension $n \le4$”, Tensor (N.S.), 38 (1982), 256–267 | MR

[13] J. Lauret, “Ricci soliton solvmanifolds”, J. Reine Angew. Math., 650 (2011), 1–21 | DOI | MR | Zbl

[14] K. Onda, “Lorentz Ricci solitons on 3-dimensional Lie groups”, Geom. Dedicata, 147 (2010), 313–322 | DOI | MR | Zbl

[15] T. L. Payne, “The existence of soliton metrics for nilpotent Lie groups”, Geom. Dedicata, 145 (2010), 71–88 | DOI | MR | Zbl