Foliations of codimension one and the Milnor conjecture
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 119-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that a fundamental group of leaves of a codimension one $C^2$-foliation with nonnegative Ricci curvature on a closed Riemannian manifold is finitely generated and almost Abelian, i.e., it contains finitely generated Abelian subgroup of finite index. In particular, we confirm the Milnor conjecture for manifolds which are leaves of a codimension one foliation with nonnegative Ricci curvature on a closed Riemannian manifold.
@article{JMAG_2018_14_2_a0,
     author = {Dmitry V. Bolotov},
     title = {Foliations of codimension one and the {Milnor} conjecture},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {119--131},
     year = {2018},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a0/}
}
TY  - JOUR
AU  - Dmitry V. Bolotov
TI  - Foliations of codimension one and the Milnor conjecture
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 119
EP  - 131
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a0/
LA  - en
ID  - JMAG_2018_14_2_a0
ER  - 
%0 Journal Article
%A Dmitry V. Bolotov
%T Foliations of codimension one and the Milnor conjecture
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 119-131
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a0/
%G en
%F JMAG_2018_14_2_a0
Dmitry V. Bolotov. Foliations of codimension one and the Milnor conjecture. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 2, pp. 119-131. http://geodesic.mathdoc.fr/item/JMAG_2018_14_2_a0/

[1] S. Adams, G. Stuck, “Splitting of non-negatively curved leaves in minimal sets of foliations”, Duke Math. J., 71 (1993), 71–92 | DOI | MR | Zbl

[2] R. L. Bishop, “A Relation between Volume, Mean Curvature and Diameter”, Euclidean Quantum Gravity, eds. G. W. Gibbons, S. W. Hawking, World Scientific, Singapore–New Jersey–London–Hong Kong, 1993, 161 | DOI

[3] D. Burago, Yu. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[4] St. Petersburg Math. J., 3 (1992), 83–96 | MR | Zbl

[5] J. Cheeger, D. Gromoll, “The splitting theorem for manifolds of nonnegative Ricci curvature”, J. Differential Geom., 6 (1971/72), 119–128 | DOI | MR | Zbl

[6] G. Hector, U. Hirsch, Introduction to the Geometry of Foliations. Part B. Foliations of codimension one, Aspects of Mathematics, E3, Second edition, Friedr. Vieweg Sohn, Braunschweig, 1987 | DOI | MR | Zbl

[7] H. Imanishi, “Structure of codimension one foliations which are almost without holonomy”, J. Math. Kyoto Univ., 16 (1976), 93–99 | DOI | MR | Zbl

[8] J. Milnor, “A note on curvature and fundamental group”, J. Differential Geometry, 2 (1968), 1–7 | DOI | MR | Zbl

[9] T. Nishimori, “Compact leaves with abelian holonomy”, Tohoku Math. J. (2), 27 (1975), 259–272 | DOI | MR | Zbl

[10] S. P. Novikov, “The topology of foliations”, Trudy Moskov. Mat. Obšč., 14, 1965, 248–278 (Russian) | MR | Zbl

[11] J. F. Plante, “On the existence of exceptional minimal sets in foliations of codimension one”, J. Differential Equations, 15 (1974), 178–194 | DOI | MR | Zbl

[12] J. F. Plante, W. P. Thurston, “Polynomial growth in holonomy groups of foliations”, Comment. Math. Helv., 51 (1976), 567–584 | DOI | MR | Zbl

[13] C. Sormani, “On loops representing elements of the fundamental group of a complete manifold with nonnegative Ricci curvature”, Indiana Univ. Math. J., 50 (2001), 1867–1883 | DOI | MR | Zbl

[14] I. Tamura, Topology of Foliations, Translated from the Japanese by A. A. Bel'skiĭ, Mir, M., 1979 (Russian) | MR | Zbl

[15] B. Wilking, “On fundamental groups of manifolds of nonnegative curvature”, Differential Geom. Appl., 13 (2000), 129–165 | DOI | MR | Zbl