On the class of Einstein exponential-type Finsler metrics
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 100-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a special class of Finsler metrics, the so-called $(\alpha,\beta)$-metrics, which are defined by $F=\alpha \phi(s)$, where $\alpha$ is a Riemannian metric and $\beta$ is a 1-form, is studied. First we show that the class of almost regular metrics obtained by Shen is Einstein if and only if it reduces to the class of Berwald metrics. In this case, the Riemannian metrics are Ricci-flat. Then we prove that an exponential metric is Einstein if and only if it is Ricci-flat.
@article{JMAG_2018_14_1_a6,
     author = {A. Tayebi and A. Nankali and B. Najafi},
     title = {On the class of {Einstein} exponential-type {Finsler} metrics},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {100--114},
     year = {2018},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a6/}
}
TY  - JOUR
AU  - A. Tayebi
AU  - A. Nankali
AU  - B. Najafi
TI  - On the class of Einstein exponential-type Finsler metrics
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 100
EP  - 114
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a6/
LA  - en
ID  - JMAG_2018_14_1_a6
ER  - 
%0 Journal Article
%A A. Tayebi
%A A. Nankali
%A B. Najafi
%T On the class of Einstein exponential-type Finsler metrics
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 100-114
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a6/
%G en
%F JMAG_2018_14_1_a6
A. Tayebi; A. Nankali; B. Najafi. On the class of Einstein exponential-type Finsler metrics. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 100-114. http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a6/

[1] H. Akbar-Zadeh, “Generalized Einstein manifolds”, J. Geom. Phys., 17 (1995), 342–380 | DOI | MR | Zbl

[2] H. Akbar-Zadeh, “Geometry of Einstein manifolds”, C.R. Acad. Sci. Paris, 339 (2004), 125–130 | DOI | MR | Zbl

[3] G. S. Asanov, Finsleroid–Finsler space with Berwald and Landsberg conditions, arXiv: math/0603472

[4] V. Balan, “On the generalized Einstein Yang–Mills equations”, Publ. Math. Debrecen, 43 (1993), 272–282 | MR

[5] D. Bao, “Unicorns in Finsler geometry”, Proceedings of the 40th Symposium on Finsler geometry (Sapporo, Japan, 2005), 19–27

[6] D. Bao, “On two curvature-driven problems in Riemann–Finsler geometry”, Adv. Stud. Pure. Math., 48 (2007), 19–71 | MR | Zbl

[7] D. Bao, C. Robles, “Ricci and flag curvatures in Finsler geometry”, A Sampler of Finsler Geometry, Math. Sci. Res. Inst. Publ., 50, Cambridge University Press, Cambridge, 2004, 197–259 | MR | Zbl

[8] R. L. Bryant, Finsler surfaces with prescribed curvature conditions, unpublished preprint (part of his Aisenstadt lectures), 1995

[9] X. Cheng, Z. Shen, Y. Tian, “A class of Einstein ($\alpha, \beta$)-metrics”, Israel J. Math., 192 (2012), 221–249 | DOI | MR | Zbl

[10] B. Najafi, A. Tayebi, “On a family of Einstein–Randers metrics”, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1021–1029 | DOI | MR | Zbl

[11] L.-I. Pişcoran, V. N. Mishra, “$S$-curvature for a new class of $(\alpha, \beta)$-metrics”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 111 (2017), 1187–1200 | MR

[12] Z. Shen, “On projectively flat $(\alpha, \beta)$-metrics”, Canad. Math. Bull., 52 (2009), 132–144 | DOI | MR | Zbl

[13] Z. Shen, “On a class of Landsberg metrics in Finsler geometry”, Canadian. J. Math., 61 (2009), 1357–1374 | DOI | MR | Zbl

[14] Z. Shen, C. Yu, On Einstein square metrics, arXiv: 1209.3876 | MR

[15] Z. Shen, C. Yu, “On a class of Einstein–Finsler metrics”, Internat. J. Math., 25 (2014), 1450030, 18 pp. | DOI | MR | Zbl

[16] A. Tayebi, “On the class of generalized Landsberg manifolds”, Period. Math. Hungar., 72 (2016), 29–36 | DOI | MR | Zbl

[17] A. Tayebi, A. Alipour, “On distance functions induced by Finsler metrics”, Publ. Math. Debrecen, 90 (2017), 333–357 | DOI | MR | Zbl

[18] A. Tayebi, M. Barzegari, “Generalized Berwald spaces with $(\alpha,\beta)$-metrics”, Indag. Math. (N.S.), 27 (2016), 670–683 | DOI | MR | Zbl

[19] A. Tayebi, A. Nankali, “On generalized Einstein–Randers metrics”, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550105, 14 pp. | DOI | MR | Zbl

[20] A. Tayebi, H. Sadeghi, “On generalized Douglas–Weyl $(\alpha,\beta)$-metrics”, Acta Math. Sin. (Engl. Ser.), 31 (2015), 1611–1620 | DOI | MR | Zbl

[21] A. Tayebi, H. Sadeghi, “Generalized P-reducible $(\alpha,\beta)$-metrics with vanishing S-curvature”, Ann. Polon. Math., 114 (2015), 67–79 | DOI | MR | Zbl

[22] A. Tayebi, M. Shahbazi Nia, “A new class of projectively flat Finsler metrics with constant flag curvature ${\mathbf K}=1$”, Differential Geom. Appl., 41 (2015), 123–133 | DOI | MR | Zbl

[23] A. Tayebi, T. Tabatabeifar, “Dougals–Randers manifolds with vanishing stretch tensor”, Publ. Math. Debrecen, 86 (2015), 423–432 | MR | Zbl

[24] A. Tayebi, T. Tabatabeifar, “Unicorn metrics with almost vanishing ${\mathbf H}$- and ${\mathbf \Xi}$-curvatures”, Turkish J. Math., 41 (2017), 998–1008 | DOI | MR

[25] Y. Yu, Y. You, “Projectively flat exponential Finsler metrics”, J. Zhejiang Univ. Sci. A, 7 (2006), 1068–1076 | DOI | Zbl