@article{JMAG_2018_14_1_a6,
author = {A. Tayebi and A. Nankali and B. Najafi},
title = {On the class of {Einstein} exponential-type {Finsler} metrics},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {100--114},
year = {2018},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a6/}
}
TY - JOUR AU - A. Tayebi AU - A. Nankali AU - B. Najafi TI - On the class of Einstein exponential-type Finsler metrics JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 100 EP - 114 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a6/ LA - en ID - JMAG_2018_14_1_a6 ER -
A. Tayebi; A. Nankali; B. Najafi. On the class of Einstein exponential-type Finsler metrics. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 100-114. http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a6/
[1] H. Akbar-Zadeh, “Generalized Einstein manifolds”, J. Geom. Phys., 17 (1995), 342–380 | DOI | MR | Zbl
[2] H. Akbar-Zadeh, “Geometry of Einstein manifolds”, C.R. Acad. Sci. Paris, 339 (2004), 125–130 | DOI | MR | Zbl
[3] G. S. Asanov, Finsleroid–Finsler space with Berwald and Landsberg conditions, arXiv: math/0603472
[4] V. Balan, “On the generalized Einstein Yang–Mills equations”, Publ. Math. Debrecen, 43 (1993), 272–282 | MR
[5] D. Bao, “Unicorns in Finsler geometry”, Proceedings of the 40th Symposium on Finsler geometry (Sapporo, Japan, 2005), 19–27
[6] D. Bao, “On two curvature-driven problems in Riemann–Finsler geometry”, Adv. Stud. Pure. Math., 48 (2007), 19–71 | MR | Zbl
[7] D. Bao, C. Robles, “Ricci and flag curvatures in Finsler geometry”, A Sampler of Finsler Geometry, Math. Sci. Res. Inst. Publ., 50, Cambridge University Press, Cambridge, 2004, 197–259 | MR | Zbl
[8] R. L. Bryant, Finsler surfaces with prescribed curvature conditions, unpublished preprint (part of his Aisenstadt lectures), 1995
[9] X. Cheng, Z. Shen, Y. Tian, “A class of Einstein ($\alpha, \beta$)-metrics”, Israel J. Math., 192 (2012), 221–249 | DOI | MR | Zbl
[10] B. Najafi, A. Tayebi, “On a family of Einstein–Randers metrics”, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1021–1029 | DOI | MR | Zbl
[11] L.-I. Pişcoran, V. N. Mishra, “$S$-curvature for a new class of $(\alpha, \beta)$-metrics”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 111 (2017), 1187–1200 | MR
[12] Z. Shen, “On projectively flat $(\alpha, \beta)$-metrics”, Canad. Math. Bull., 52 (2009), 132–144 | DOI | MR | Zbl
[13] Z. Shen, “On a class of Landsberg metrics in Finsler geometry”, Canadian. J. Math., 61 (2009), 1357–1374 | DOI | MR | Zbl
[14] Z. Shen, C. Yu, On Einstein square metrics, arXiv: 1209.3876 | MR
[15] Z. Shen, C. Yu, “On a class of Einstein–Finsler metrics”, Internat. J. Math., 25 (2014), 1450030, 18 pp. | DOI | MR | Zbl
[16] A. Tayebi, “On the class of generalized Landsberg manifolds”, Period. Math. Hungar., 72 (2016), 29–36 | DOI | MR | Zbl
[17] A. Tayebi, A. Alipour, “On distance functions induced by Finsler metrics”, Publ. Math. Debrecen, 90 (2017), 333–357 | DOI | MR | Zbl
[18] A. Tayebi, M. Barzegari, “Generalized Berwald spaces with $(\alpha,\beta)$-metrics”, Indag. Math. (N.S.), 27 (2016), 670–683 | DOI | MR | Zbl
[19] A. Tayebi, A. Nankali, “On generalized Einstein–Randers metrics”, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550105, 14 pp. | DOI | MR | Zbl
[20] A. Tayebi, H. Sadeghi, “On generalized Douglas–Weyl $(\alpha,\beta)$-metrics”, Acta Math. Sin. (Engl. Ser.), 31 (2015), 1611–1620 | DOI | MR | Zbl
[21] A. Tayebi, H. Sadeghi, “Generalized P-reducible $(\alpha,\beta)$-metrics with vanishing S-curvature”, Ann. Polon. Math., 114 (2015), 67–79 | DOI | MR | Zbl
[22] A. Tayebi, M. Shahbazi Nia, “A new class of projectively flat Finsler metrics with constant flag curvature ${\mathbf K}=1$”, Differential Geom. Appl., 41 (2015), 123–133 | DOI | MR | Zbl
[23] A. Tayebi, T. Tabatabeifar, “Dougals–Randers manifolds with vanishing stretch tensor”, Publ. Math. Debrecen, 86 (2015), 423–432 | MR | Zbl
[24] A. Tayebi, T. Tabatabeifar, “Unicorn metrics with almost vanishing ${\mathbf H}$- and ${\mathbf \Xi}$-curvatures”, Turkish J. Math., 41 (2017), 998–1008 | DOI | MR
[25] Y. Yu, Y. You, “Projectively flat exponential Finsler metrics”, J. Zhejiang Univ. Sci. A, 7 (2006), 1068–1076 | DOI | Zbl