Spectral analysis of discontinuous boundary-value problems with retarded argument
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 78-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we are concerned with spectral properties of discontinuous Sturm–Liouville type problems with retarded argument. We extend and generalize some approaches and results of the classical regular and discontinuous Sturm–Liouville problems. First, we study the spectral properties of a Sturm–Liouville problem on the half-axis and obtain lower bounds for the eigenvalues of this problem. Then we study spectral properties of a Sturm–Liouville problem with discontinuous weight function which contains a spectral parameter in the boundary conditions. We also obtain asymptotic formulas for eigenvalues and eigenfunctions of this problem and bounds for the distance between eigenvalues.
@article{JMAG_2018_14_1_a5,
     author = {Erdo\u{g}an \c{S}en},
     title = {Spectral analysis of discontinuous boundary-value problems with retarded argument},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {78--99},
     year = {2018},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a5/}
}
TY  - JOUR
AU  - Erdoğan Şen
TI  - Spectral analysis of discontinuous boundary-value problems with retarded argument
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 78
EP  - 99
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a5/
LA  - en
ID  - JMAG_2018_14_1_a5
ER  - 
%0 Journal Article
%A Erdoğan Şen
%T Spectral analysis of discontinuous boundary-value problems with retarded argument
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 78-99
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a5/
%G en
%F JMAG_2018_14_1_a5
Erdoğan Şen. Spectral analysis of discontinuous boundary-value problems with retarded argument. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 78-99. http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a5/

[1] Z. Akdoğan, M. Demirci, O. Sh. Mukhtarov, “Green function of discontinuous boundary-value problem with transmission conditions”, Math. Methods Appl. Sci., 30 (2007), 1719–1738 | DOI | MR | Zbl

[2] J. Ao, J. Sun, M. Zhang, “The finite spectrum of Sturm–Liouville problems with transmission conditions”, Appl. Math. Comput., 218 (2011), 1166–1173 | MR | Zbl

[3] A. Bayramov, S. Öztürk Uslu, S. Kizilbudak C̣aliṣkan, “Computation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument”, Appl. Math. Comp., 191 (2007), 592–600 | DOI | MR | Zbl

[4] A. Bayramov, E. Şen, “On a Sturm–Liouville type problem with retarded argument”, Math. Methods Appl. Sci., 36 (2013), 39–48 | DOI | MR | Zbl

[5] R. Bellman, K. L. Cook, Differential-Difference Equations, Academic Press, New York–London, 1963 | MR | Zbl

[6] P. A. Binding, P. J. Browne, K. Seddighi, “Sturm–Liouville problems with eigenparameter dependent boundary conditions”, Proc. Edinb. Math. Soc. (2), 37 (1994), 57–72 | DOI | MR | Zbl

[7] A. Campbell, S. A. Nazarov, “Asymptotics of eigenvalues of a plate with small clamped zone”, Positivity, 5 (2001), 275–295 | DOI | MR | Zbl

[8] C. T. Fulton, “Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions”, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 293–308 | DOI | MR | Zbl

[9] M. Jabloński, K. Twardowska, “On boundary value problems for differential equations with a retarded argument”, Univ. Iagel. Acta Math., 26 (1987), 29–36 | MR | Zbl

[10] M. Kadakal, O. Sh. Mukhtarov, “Sturm–Liouville problems with discontinuities at two points”, Comput. Math. Appl., 54 (2007), 1367–1379 | DOI | MR | Zbl

[11] B. M. Levitansl, Expansion in Characteristic Functions of Differential Equations of the Second Order, Gosudarstv. Izdat. Tehn.-Teor. Lit., M.–L., 1950 (Russian) | MR

[12] Kh. R. Mamedov, “On boundary value problem with parameter in boundary conditions”, Spectral Theory of Operator and Its Applications, XI, Izdat. “Èlm”, Baku, 1997, 117–121 (Russian) | MR

[13] Kh. R. Mamedov, N. Palamut, “On a direct problem of scattering theory for a class of Sturm–Liouville operator with discontinuous coefficient”, Proc. Jangjeon Math. Soc., 12 (2009), 243–251 | MR | Zbl

[14] V. A. Marchenko, Sturm–Liouville operators and applications, Revised ed., AMS Chelsea Publishing, Providence, RI, 2011 | MR | Zbl

[15] A. D. Miškis, Linear Differential Equations with Retarded Argument, Gosudarstv. Izdat. Tehn.-Teor. Lit., M.–L., 1951 (Russian) | MR

[16] S. B. Norkin, “On boundary problem of Sturm–Liouville type for second-order differential equation with retarded argument”, Izv. Vysš. Učebn. Zaved. Matematika, 6 (1958), 203–214 (Russian) | MR | Zbl

[17] S. B. Norkin, Differential equations of the second order with retarded argument. Some problems of the theory of vibrations of systems with retardation, Translations of Mathematical Monographs, 31, Amer. Math. Soc., Providence, RI, 1972 | MR | Zbl

[18] Z. I. Rehlickiĭ, “Test for boundedness of the solutions of linear differential equations with several lags of the argument”, Dokl. Akad. Nauk SSSR, 125 (1959), 46–47 (Russian) | MR

[19] E. Şen, A. Bayramov, “Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the boundary condition”, Math. Comput. Modelling, 54 (2011), 3090–3097 | DOI | MR | Zbl

[20] E. Şen, A. Bayramov, “Asymptotic formulations of the eigenvalues and eigenfunctions for a boundary value problem”, Math. Methods Appl. Sci., 36 (2013), 1512–1519 | DOI | MR | Zbl

[21] E. Şen, J. J. Seo, S. Araci, “Asymptotic behaviour of eigenvalues and eigenfunctions of a Sturm–Liouville problem with retarded argument”, J. Appl. Math., 2013, 306917, 8 pp. | MR | Zbl

[22] E. C. Titchmarsh, Eigenfunctions Expansion Associated with Second-Order Differential Equations, v. I, Clarendon Press, Oxford, 1962 | MR

[23] E. Tunç, O. Sh. Mukhtarov, “Fundamental solutions and eigenvalues of one boundary-value problem with transmission conditions”, Appl. Math. Comput., 157 (2004), 347–355 | MR | Zbl

[24] J. Walter, “Regular eigenvalue problems with eigenvalue parameter in the boundary conditions”, Math. Z., 133 (1973), 301–312 | DOI | MR | Zbl