Hypersurfaces with $L_r$-pointwise $1$-type Gauss map
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 67-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study hypersurfaces in $\mathbb E^{n+1}$ whose Gauss map $G$ satisfies the equation $L_rG = f(G + C)$ for a smooth function $f$ and a constant vector $C$, where $L_r$ is the linearized operator of the $(r + 1)$-st mean curvature of the hypersurface, i.e., $L_r(f)=\mathop{\mathrm{Tr}}(P_r\circ\nabla^2f)$ for $f\in \mathcal{C}^\infty(M)$, where $P_r$ is the $r$-th Newton transformation, $\nabla^2f$ is the Hessian of $f$, $L_rG=(L_rG_1,\ldots,L_rG_{n+1})$ and $G=(G_1,\ldots,G_{n+1})$. We focus on hypersurfaces with constant $(r+1)$-st mean curvature and constant mean curvature. We obtain some classification and characterization theorems for these classes of hypersurfaces.
@article{JMAG_2018_14_1_a4,
     author = {Akram Mohammadpouri},
     title = {Hypersurfaces with $L_r$-pointwise $1$-type {Gauss} map},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {67--77},
     year = {2018},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a4/}
}
TY  - JOUR
AU  - Akram Mohammadpouri
TI  - Hypersurfaces with $L_r$-pointwise $1$-type Gauss map
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 67
EP  - 77
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a4/
LA  - en
ID  - JMAG_2018_14_1_a4
ER  - 
%0 Journal Article
%A Akram Mohammadpouri
%T Hypersurfaces with $L_r$-pointwise $1$-type Gauss map
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 67-77
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a4/
%G en
%F JMAG_2018_14_1_a4
Akram Mohammadpouri. Hypersurfaces with $L_r$-pointwise $1$-type Gauss map. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 67-77. http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a4/

[1] L. J. Alías, N. Gürbüz, “An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures”, Geom. Dedicata, 121 (2006), 113–127 | MR | Zbl

[2] C. Baikoussis, “Ruled submanifolds with finite type Gauss map”, J. Geom., 49 (1994), 42–45 | DOI | MR | Zbl

[3] C. Baikoussis, D. E. Blair, “On the Gauss map of ruled surfaces”, Glasg. Math. J., 34 (1992), 355–359 | DOI | MR | Zbl

[4] C. Baikoussis, B. Y. Chen, L. Verstraelen, “Ruled surfaces and tubes with finite type Gauss map”, Tokyo J. Math., 16 (1993), 341–349 | DOI | MR | Zbl

[5] C. Baikoussis, L. Verstralen, “The Chen-type of the spiral surfaces”, Results Math., 28 (1995), 214–223 | DOI | MR | Zbl

[6] B. Y. Chen, “Some open problems and conjetures on submanifolds of finite type”, Soochow J. Math., 17 (1991), 169–188 | MR | Zbl

[7] B. Y. Chen, Pseudo-Riemannian Geometry, $\delta$-Invariants and Applications, World Scientific Publishing Co. Pte. Ltd, 2011 | MR | Zbl

[8] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 2, World Scientific Publishing Co, Singapore, 2014 | DOI | MR

[9] B. Y. Chen, M. Choi, Y. H. Kim, “Surfaces of revolution with pointwise 1-type Gauss map”, J. Korean Math. Soc., 42 (2005), 447–455 | DOI | MR | Zbl

[10] B. Y. Chen, P. Piccinni, “Sumanifolds with finite type Gauss map”, Bull. Aust. Math. Soc., 35 (1987), 161–186 | DOI | MR | Zbl

[11] S. Y. Cheng, S. T. Yau, “Hypersurfaces with constant scalar curvature”, Math. Ann., 225 (1977), 195–204 | DOI | MR | Zbl

[12] U. Dursun, “Hypersurfaces with pointwise 1-type Gauss map”, Taiwanese J. Math., 11 (2007), 1407–1416 | DOI | MR | Zbl

[13] G. Hardy, J. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1989 | MR

[14] T. Hasanis, A. Savas-Halilaj, T. Vlachos, “Minimal hypersurfaces with zero Gauss–Kronecker curvature”, Illinois J. Math., 49 (2005), 523–529 | MR | Zbl

[15] S. M. B. Kashani, “On some $L_1$-finite type (hyper)surfaces in $\mathbb{R}^{n+1}$”, Bull. Korean Math. Soc., 46 (2009), 35–43 | DOI | MR | Zbl

[16] U. H. Ki, D. S. Kim, Y. H. Kim, Y. M. Roh, “Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space”, Taiwanese J. Math., 13 (2009), 317–338 | DOI | MR | Zbl

[17] Y. H. Kim, N. C. Turgay, “Surfaces in $\mathbb E^3$ with $L_1$-pointwise 1-type Gauss map”, Bull. Korean Math. Soc., 50 (2013), 935–949 | DOI | MR | Zbl

[18] Y. H. Kim, N. C. Turgay, “Classification of helicoidal surfaces with $L_1$-pointwise 1-type Gauss map”, Bull. Korean Math. Soc., 50 (2013), 1345–1356 | DOI | MR | Zbl

[19] Y. H. Kim, D. W. Yoon, “Ruled surfaces with pointwise 1-type Gauss map”, J. Geom. Phys., 34 (2000), 191–205 | DOI | MR | Zbl

[20] T. Levi-Civita, “Famiglie di superficle isoparametriche nell'orinario spazio Euclideo”, Atti Accad. Naz. Lincei Rend., 26 (1073), 335–362

[21] J. Qian, Y. H. Kim, “Classifications of canal surfaces with $L_1$-pointwise 1-type Gauss map”, Milan J. Math., 83 (2015), 145–155 | DOI | MR | Zbl

[22] R. C. Reilly, “Variational properties of functions of the mean curvatures for hypersurfaces in space forms”, J. Differential Geom., 8 (1973), 465–477 | DOI | MR | Zbl

[23] B. Segre, “Famiglie di ipersuperficle isoparametriche negli spazi Euclidei ad un qualunque numero di dimensoni”, Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis Mat. Natur., 27 (1938), 203–207