@article{JMAG_2018_14_1_a4,
author = {Akram Mohammadpouri},
title = {Hypersurfaces with $L_r$-pointwise $1$-type {Gauss} map},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {67--77},
year = {2018},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a4/}
}
Akram Mohammadpouri. Hypersurfaces with $L_r$-pointwise $1$-type Gauss map. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 67-77. http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a4/
[1] L. J. Alías, N. Gürbüz, “An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures”, Geom. Dedicata, 121 (2006), 113–127 | MR | Zbl
[2] C. Baikoussis, “Ruled submanifolds with finite type Gauss map”, J. Geom., 49 (1994), 42–45 | DOI | MR | Zbl
[3] C. Baikoussis, D. E. Blair, “On the Gauss map of ruled surfaces”, Glasg. Math. J., 34 (1992), 355–359 | DOI | MR | Zbl
[4] C. Baikoussis, B. Y. Chen, L. Verstraelen, “Ruled surfaces and tubes with finite type Gauss map”, Tokyo J. Math., 16 (1993), 341–349 | DOI | MR | Zbl
[5] C. Baikoussis, L. Verstralen, “The Chen-type of the spiral surfaces”, Results Math., 28 (1995), 214–223 | DOI | MR | Zbl
[6] B. Y. Chen, “Some open problems and conjetures on submanifolds of finite type”, Soochow J. Math., 17 (1991), 169–188 | MR | Zbl
[7] B. Y. Chen, Pseudo-Riemannian Geometry, $\delta$-Invariants and Applications, World Scientific Publishing Co. Pte. Ltd, 2011 | MR | Zbl
[8] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 2, World Scientific Publishing Co, Singapore, 2014 | DOI | MR
[9] B. Y. Chen, M. Choi, Y. H. Kim, “Surfaces of revolution with pointwise 1-type Gauss map”, J. Korean Math. Soc., 42 (2005), 447–455 | DOI | MR | Zbl
[10] B. Y. Chen, P. Piccinni, “Sumanifolds with finite type Gauss map”, Bull. Aust. Math. Soc., 35 (1987), 161–186 | DOI | MR | Zbl
[11] S. Y. Cheng, S. T. Yau, “Hypersurfaces with constant scalar curvature”, Math. Ann., 225 (1977), 195–204 | DOI | MR | Zbl
[12] U. Dursun, “Hypersurfaces with pointwise 1-type Gauss map”, Taiwanese J. Math., 11 (2007), 1407–1416 | DOI | MR | Zbl
[13] G. Hardy, J. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1989 | MR
[14] T. Hasanis, A. Savas-Halilaj, T. Vlachos, “Minimal hypersurfaces with zero Gauss–Kronecker curvature”, Illinois J. Math., 49 (2005), 523–529 | MR | Zbl
[15] S. M. B. Kashani, “On some $L_1$-finite type (hyper)surfaces in $\mathbb{R}^{n+1}$”, Bull. Korean Math. Soc., 46 (2009), 35–43 | DOI | MR | Zbl
[16] U. H. Ki, D. S. Kim, Y. H. Kim, Y. M. Roh, “Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space”, Taiwanese J. Math., 13 (2009), 317–338 | DOI | MR | Zbl
[17] Y. H. Kim, N. C. Turgay, “Surfaces in $\mathbb E^3$ with $L_1$-pointwise 1-type Gauss map”, Bull. Korean Math. Soc., 50 (2013), 935–949 | DOI | MR | Zbl
[18] Y. H. Kim, N. C. Turgay, “Classification of helicoidal surfaces with $L_1$-pointwise 1-type Gauss map”, Bull. Korean Math. Soc., 50 (2013), 1345–1356 | DOI | MR | Zbl
[19] Y. H. Kim, D. W. Yoon, “Ruled surfaces with pointwise 1-type Gauss map”, J. Geom. Phys., 34 (2000), 191–205 | DOI | MR | Zbl
[20] T. Levi-Civita, “Famiglie di superficle isoparametriche nell'orinario spazio Euclideo”, Atti Accad. Naz. Lincei Rend., 26 (1073), 335–362
[21] J. Qian, Y. H. Kim, “Classifications of canal surfaces with $L_1$-pointwise 1-type Gauss map”, Milan J. Math., 83 (2015), 145–155 | DOI | MR | Zbl
[22] R. C. Reilly, “Variational properties of functions of the mean curvatures for hypersurfaces in space forms”, J. Differential Geom., 8 (1973), 465–477 | DOI | MR | Zbl
[23] B. Segre, “Famiglie di ipersuperficle isoparametriche negli spazi Euclidei ad un qualunque numero di dimensoni”, Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis Mat. Natur., 27 (1938), 203–207