The interaction of the Maxwell flows of general form for the Bryan–Pidduck model
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 54-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The interaction between the two Maxwell flows of general form in a gas of rough spheres is studied. The approximate solution of the Bryan–Pidduck equation describing the interaction is a bimodal distribution with specially selected coefficient functions. It is shown that under certain additional conditions imposed on these functions and hydrodynamic parameters of the flows, the norm of the difference between the parts of the Bryan–Pidduck equation can be arbitrarily small.
@article{JMAG_2018_14_1_a3,
     author = {O. A. Hukalov and V. D. Gordevskyy},
     title = {The interaction of the {Maxwell} flows of general form for the {Bryan{\textendash}Pidduck} model},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {54--66},
     year = {2018},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a3/}
}
TY  - JOUR
AU  - O. A. Hukalov
AU  - V. D. Gordevskyy
TI  - The interaction of the Maxwell flows of general form for the Bryan–Pidduck model
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 54
EP  - 66
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a3/
LA  - en
ID  - JMAG_2018_14_1_a3
ER  - 
%0 Journal Article
%A O. A. Hukalov
%A V. D. Gordevskyy
%T The interaction of the Maxwell flows of general form for the Bryan–Pidduck model
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 54-66
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a3/
%G en
%F JMAG_2018_14_1_a3
O. A. Hukalov; V. D. Gordevskyy. The interaction of the Maxwell flows of general form for the Bryan–Pidduck model. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 54-66. http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a3/

[1] T. Carleman, Problems Mathematiques dans la Theorie Cinetique des Gas, Almqvist Wiksells, Uppsala, 1957 | MR

[2] C. Cercignani, The Boltzman Equation and its Applications, Springer, New York, 1988 | MR

[3] C. Cercignani, M. Lampis, “On the kinetic theory of a dense gas of rough spheres”, J. Stat. Phys., 53 (1988), 655–672 | DOI | MR | Zbl

[4] S. Chapman, T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge Univ. Press, Cambridge, 1952 | MR

[5] O. G. Fridlender, “Local Maxwellian solutions of the Boltzmann equation”, Prikl. Mat. Mekh., 29 (1965), 973–977 (Russian)

[6] V. D. Gordevskyy, “Explicit approximate solutions of the Boltzmann equation for the model of rough spheres”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2000, no. 4, 10–13 (Ukrainian)

[7] V. D. Gordevskyy, “Approximate billow solutions of the kinetic Bryan–Pidduck equation”, Math. Methods Appl. Sci., 23 (2000), 1121–1137 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[8] V. D. Gordevskyy, “On the non-stationary Maxwellians”, Math. Methods Appl. Sci., 27 (2004), 231–247 | DOI | MR | Zbl

[9] V. D. Gordevskyy, A. A. Gukalov, “Maxwell distributions for the model of rough spheres”, Ukranïn. Mat. Zh., 63 (2011), 629–639 (Russian) | MR

[10] V. D. Gordevskyy, A. A. Gukalov, “Interaction of the eddy flows in the Bryan–Pidduck model”, Visn. Kharkiv. Nats. Univ. Mat. Prikl. Mat. Mekh., 2011, no. 990, 27–41 (Russian)

[11] H. Grad, “On the kinetic theory of racefied gases”, Comm. Pure Appl. Math., 2 (1949), 331–407 | DOI | MR | Zbl

[12] M. N. Kogan, The Dynamics of a Rarefied Gas, Nauka, M., 1967 (Russian)