Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 27-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence result of renormalized solutions for a class of nonlinear parabolic systems with variable exponents of the type \begin{align*} \partial_{t} e^{\lambda u_i(x,t)}& -\mathop{\mathrm{div}} (|u_i(x,t)|^{p(x)-2}u_i(x,t))\\ & + \mathop{\mathrm{div}}(c(x,t)|u_i(x,t)|^{\gamma(x)-2}u_i(x,t))=f_{i}(x,u_{1},u_{2})-\mathop{\mathrm{div}}(F_{i}), \end{align*} for $i=1,2,$ is given. The nonlinearity structure changes from one point to other in the domain $\Omega$. The source term is less regular (bounded Radon measure) and no coercivity is in the nondivergent lower order term $\mathop{\mathrm{div}}(c(x,t)|u(x,t)|^{\gamma(x)-2}u(x,t))$. The main contribution of our work is the proof of the existence of renormalized solutions without the coercivity condition on nonlinearities which allows us to use the Gagliardo–Nirenberg theorem in the proof.
@article{JMAG_2018_14_1_a2,
     author = {B. El Hamdaoui and J. Bennouna and A. Aberqi},
     title = {Renormalized solutions for nonlinear parabolic systems in the {Lebesgue{\textendash}Sobolev} spaces with variable exponents},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {27--53},
     year = {2018},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a2/}
}
TY  - JOUR
AU  - B. El Hamdaoui
AU  - J. Bennouna
AU  - A. Aberqi
TI  - Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 27
EP  - 53
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a2/
LA  - en
ID  - JMAG_2018_14_1_a2
ER  - 
%0 Journal Article
%A B. El Hamdaoui
%A J. Bennouna
%A A. Aberqi
%T Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 27-53
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a2/
%G en
%F JMAG_2018_14_1_a2
B. El Hamdaoui; J. Bennouna; A. Aberqi. Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 27-53. http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a2/

[1] A. Aberqi, J. Bennouna, M. Mekkour, H. Redwane, Solvability of nonlinear and noncoercive parabolic problems with lower order terms and measure data, http://thaijmath.in.cmu.ac.th | MR

[2] Y. Akdim, J. Bennouna, M. Mekkour, “Solvability of degenerate parabolic equations without sign condition and three unbounded nonlinearities”, Electron. J. Differential Equations, 2011 (2011), 1–26 | MR

[3] S. N. Antontsev, “Wave equation with p(x,t)-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3 (2011), 503–525 | MR | Zbl

[4] S. Antontsev, M. Chipot, Y. Xie, “Uniqueness results for equations of the p(x)-Laplacian type”, Adv. Math. Sci. Appl., 17 (2007), 287–304 | MR | Zbl

[5] S. N. Antontsev, S. I. Shmarev, “Parabolic Equations with Anisotropic Nonstandard Growth Conditions”, Internat. Ser. Numer. Math., 154, Birkhäuser, Basel, 2006, 33–44 | DOI | MR

[6] S. N. Antontsev, S. I. Shmarev, “Localization of solutions of anisotropic parabolic equations”, Nonlinear Anal.,, 71 (2009), 725–737 | DOI | MR

[7] S. N. Antontsev, S. Shmarev, Evolution PDEs with Nonstandart Growth Conditions: Existence, Uniqueness, Localization, Blow-Up, Atlantis Stud. Differ. Equ., 4, Atlantis Press, Paris, 2015 | DOI | MR

[8] M. Bendahmane, P. Wittbold, A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^{1}$-data”, J. Differential Equation, 249 (2010), 483–515 | DOI | MR

[9] A. Benkirane, J. Bennouna, “Existence of solution for nonlinear elliptic degenrate equations”, Nonlinear Anal., 54 (2003), 9–37 | DOI | MR | Zbl

[10] D. Blanchard, F. Murat, “Renormalized solutions of nonlinear parabolic with $L^{1}$ data: existence and uniqueness”, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 137–152 | DOI | MR

[11] D. Blanchard, F. Murat, H. Redwane, “Existence and uniqueness of renormalized solution for fairly general class of non linear parabolic problems”, J. Differential Equations., 177 (2001), 331–374 | DOI | MR | Zbl

[12] D. Blanchard, H. Redwane, “Renormalized solutions for class of nonlinear evolution problems”, J. Math. Pures Appl., 77 (1998), 117–151 | DOI | MR | Zbl

[13] H. Brezis, Functional analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011 | MR | Zbl

[14] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, “Renormalized solutions of elliptic equations with general measure data”, Ann. Scuala Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741–808 | MR | Zbl

[15] R.-Di Nardo, Nonlinear parabolic equations with a lower order term, Prepint N. 60-2008, Departimento di Matematica e Applicazioni “R. Caccippoli”, Universita degli Studi di Napoli “Federico II”

[16] L. Diening, “Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot) }$ and $W^{k,p(\cdot) }$”, Math. Nachr., 268 (2004), 31–43 | DOI | MR | Zbl

[17] R.-J. Diperna, P.-L. Lions, “On the Cauchy Problem for the Boltzmann Equations: Global existence and weak stability”, Ann. of Math., 130 (1989), 285–366 | DOI | MR

[18] X. L. Fan, D. Zhao, “On the spaces $L^{p(x)}(U)$ and $W^{m,p(x)}(U)$”, J. Math. Anal. Appl., 263 (2001), 424–446 | DOI | MR | Zbl

[19] O. Kovacik, J. Rakosnik, “On spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$”, Czechoslovak Math. J., 41(116) (1991), 592–618 | MR | Zbl

[20] R. Landes, “On the existence of weak solutions for quasilinear parabolic initial-boundary problems”, Proc. Roy. Soc. Edinburgh Sect. A, 89 (1981), 321–366 | DOI | MR

[21] J.-L. Lions, Quelques Méthodes de Resolution des Problémes aux Limites non Linéaires, Dunod et Gauthier–Villars, Paris, 1969 | MR

[22] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983 | DOI | MR | Zbl

[23] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950 | MR | Zbl

[24] A. Porretta, “Existence results for nonlinear parabolic equations via strong convergence of trauncations”, Ann. Mat. Pura Appl. (4), 177 (1999), 143–172 | DOI | MR | Zbl

[25] K. Rajagopal, M. Ruzic̃ka, “On the modeling of electrorheological materials”, Mech. Res. Comm., 23 (1996), 401–407 | DOI | Zbl

[26] P. Wittbold, A. Zimmermann, “Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and $L^{1}$data”, Nonlinear Anal., 72 (2010), 299–300 | DOI | MR

[27] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR-Izv., 29 (1987), 33–66 | DOI | Zbl

[28] V. V. Zhikov, “On passing to the limit in nonlinear variational problem”, Sb. Math., 183 (1992), 47–84 | MR

[29] V. V. Zhikov, “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3 (1994), 249–269 | MR