@article{JMAG_2018_14_1_a2,
author = {B. El Hamdaoui and J. Bennouna and A. Aberqi},
title = {Renormalized solutions for nonlinear parabolic systems in the {Lebesgue{\textendash}Sobolev} spaces with variable exponents},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {27--53},
year = {2018},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a2/}
}
TY - JOUR AU - B. El Hamdaoui AU - J. Bennouna AU - A. Aberqi TI - Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 27 EP - 53 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a2/ LA - en ID - JMAG_2018_14_1_a2 ER -
%0 Journal Article %A B. El Hamdaoui %A J. Bennouna %A A. Aberqi %T Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2018 %P 27-53 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a2/ %G en %F JMAG_2018_14_1_a2
B. El Hamdaoui; J. Bennouna; A. Aberqi. Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018) no. 1, pp. 27-53. http://geodesic.mathdoc.fr/item/JMAG_2018_14_1_a2/
[1] A. Aberqi, J. Bennouna, M. Mekkour, H. Redwane, Solvability of nonlinear and noncoercive parabolic problems with lower order terms and measure data, http://thaijmath.in.cmu.ac.th | MR
[2] Y. Akdim, J. Bennouna, M. Mekkour, “Solvability of degenerate parabolic equations without sign condition and three unbounded nonlinearities”, Electron. J. Differential Equations, 2011 (2011), 1–26 | MR
[3] S. N. Antontsev, “Wave equation with p(x,t)-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3 (2011), 503–525 | MR | Zbl
[4] S. Antontsev, M. Chipot, Y. Xie, “Uniqueness results for equations of the p(x)-Laplacian type”, Adv. Math. Sci. Appl., 17 (2007), 287–304 | MR | Zbl
[5] S. N. Antontsev, S. I. Shmarev, “Parabolic Equations with Anisotropic Nonstandard Growth Conditions”, Internat. Ser. Numer. Math., 154, Birkhäuser, Basel, 2006, 33–44 | DOI | MR
[6] S. N. Antontsev, S. I. Shmarev, “Localization of solutions of anisotropic parabolic equations”, Nonlinear Anal.,, 71 (2009), 725–737 | DOI | MR
[7] S. N. Antontsev, S. Shmarev, Evolution PDEs with Nonstandart Growth Conditions: Existence, Uniqueness, Localization, Blow-Up, Atlantis Stud. Differ. Equ., 4, Atlantis Press, Paris, 2015 | DOI | MR
[8] M. Bendahmane, P. Wittbold, A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^{1}$-data”, J. Differential Equation, 249 (2010), 483–515 | DOI | MR
[9] A. Benkirane, J. Bennouna, “Existence of solution for nonlinear elliptic degenrate equations”, Nonlinear Anal., 54 (2003), 9–37 | DOI | MR | Zbl
[10] D. Blanchard, F. Murat, “Renormalized solutions of nonlinear parabolic with $L^{1}$ data: existence and uniqueness”, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 137–152 | DOI | MR
[11] D. Blanchard, F. Murat, H. Redwane, “Existence and uniqueness of renormalized solution for fairly general class of non linear parabolic problems”, J. Differential Equations., 177 (2001), 331–374 | DOI | MR | Zbl
[12] D. Blanchard, H. Redwane, “Renormalized solutions for class of nonlinear evolution problems”, J. Math. Pures Appl., 77 (1998), 117–151 | DOI | MR | Zbl
[13] H. Brezis, Functional analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011 | MR | Zbl
[14] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, “Renormalized solutions of elliptic equations with general measure data”, Ann. Scuala Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741–808 | MR | Zbl
[15] R.-Di Nardo, Nonlinear parabolic equations with a lower order term, Prepint N. 60-2008, Departimento di Matematica e Applicazioni “R. Caccippoli”, Universita degli Studi di Napoli “Federico II”
[16] L. Diening, “Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot) }$ and $W^{k,p(\cdot) }$”, Math. Nachr., 268 (2004), 31–43 | DOI | MR | Zbl
[17] R.-J. Diperna, P.-L. Lions, “On the Cauchy Problem for the Boltzmann Equations: Global existence and weak stability”, Ann. of Math., 130 (1989), 285–366 | DOI | MR
[18] X. L. Fan, D. Zhao, “On the spaces $L^{p(x)}(U)$ and $W^{m,p(x)}(U)$”, J. Math. Anal. Appl., 263 (2001), 424–446 | DOI | MR | Zbl
[19] O. Kovacik, J. Rakosnik, “On spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$”, Czechoslovak Math. J., 41(116) (1991), 592–618 | MR | Zbl
[20] R. Landes, “On the existence of weak solutions for quasilinear parabolic initial-boundary problems”, Proc. Roy. Soc. Edinburgh Sect. A, 89 (1981), 321–366 | DOI | MR
[21] J.-L. Lions, Quelques Méthodes de Resolution des Problémes aux Limites non Linéaires, Dunod et Gauthier–Villars, Paris, 1969 | MR
[22] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983 | DOI | MR | Zbl
[23] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950 | MR | Zbl
[24] A. Porretta, “Existence results for nonlinear parabolic equations via strong convergence of trauncations”, Ann. Mat. Pura Appl. (4), 177 (1999), 143–172 | DOI | MR | Zbl
[25] K. Rajagopal, M. Ruzic̃ka, “On the modeling of electrorheological materials”, Mech. Res. Comm., 23 (1996), 401–407 | DOI | Zbl
[26] P. Wittbold, A. Zimmermann, “Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and $L^{1}$data”, Nonlinear Anal., 72 (2010), 299–300 | DOI | MR
[27] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR-Izv., 29 (1987), 33–66 | DOI | Zbl
[28] V. V. Zhikov, “On passing to the limit in nonlinear variational problem”, Sb. Math., 183 (1992), 47–84 | MR
[29] V. V. Zhikov, “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3 (1994), 249–269 | MR