@article{JMAG_2017_13_3_a4,
author = {E. Ya. Khruslov and L. O. Khilkova and M. V. Goncharenko},
title = {Integral conditions for convergence of solutions of non-linear {Robin's} problem in strongly perforated domain},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {283--313},
year = {2017},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_3_a4/}
}
TY - JOUR AU - E. Ya. Khruslov AU - L. O. Khilkova AU - M. V. Goncharenko TI - Integral conditions for convergence of solutions of non-linear Robin's problem in strongly perforated domain JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2017 SP - 283 EP - 313 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2017_13_3_a4/ LA - en ID - JMAG_2017_13_3_a4 ER -
%0 Journal Article %A E. Ya. Khruslov %A L. O. Khilkova %A M. V. Goncharenko %T Integral conditions for convergence of solutions of non-linear Robin's problem in strongly perforated domain %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2017 %P 283-313 %V 13 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2017_13_3_a4/ %G en %F JMAG_2017_13_3_a4
E. Ya. Khruslov; L. O. Khilkova; M. V. Goncharenko. Integral conditions for convergence of solutions of non-linear Robin's problem in strongly perforated domain. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 3, pp. 283-313. http://geodesic.mathdoc.fr/item/JMAG_2017_13_3_a4/
[1] B. Cabarrubias, P. Donato, “Homogenization of a Quasilinear Elliptic Problem with Nonlinear Robin Boundary Condition”, Appl. Anal.: An Intern. J., 91:6 (2012), 1111–1127 | DOI | MR | Zbl
[2] I. Chourabi, P. Donato, “Homogenization of Elliptic Problems with Quadratic Growth and Nonhomogenous Robin Conditions in Perforated Domains”, Chin. Ann. Math., 37B:6 (2016), 833–852 | DOI | MR | Zbl
[3] D. Cioranescu, P. Donato, “On Robin Problems in Perforated Domains”, Math. Sci. Appl., 9 (1997), 123–135 | MR
[4] D. Cioranescu, P. Donato, R. Zaki, “Asymptotic Behaviour of Elliptic Problems in Perforated Domains with Nonlinear Boundary Conditions”, Asymptot. Anal., 53 (2007), 209–235 | MR | Zbl
[5] C. Conca, J. Diaz, A. Linan, C. Timofte, “Homogenization in Chemical Reactive Floes”, Electron. J. Differential Equations, 40 (2004), 1–22 | DOI | MR
[6] C. Conca, J. Diaz, A. Linan, C. Timofte, “Homogenization Results for Chemical Reactive Flows Through Porous Media”, New trends in continuum mechanics, Theta Ser. Adv. Math., 3, Theta, Bucharest, 2005, 99–107 | MR | Zbl
[7] C. Conca, J. Diaz, C. Timofte, “On the Homogenization of a Transmission Problem Arising in Chemistry”, Romanian Rep. Phys., 56:4 (2004), 613–622 | MR
[8] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, 1998 | MR | Zbl
[9] Ukrainian Math. J., 67:9 (2016), 1349–1366 | DOI | MR | MR | Zbl
[10] M.V. Goncharenko, L.A. Khilkova, “Homogenized Model of Diffusion in a Locally-Periodic Porous Media with Nonlinear Absorption at the Boundary”, Dopov. Nats. Akad. Nauk Ukr., 10:6 (2016), 15–19 (Russian) | DOI | MR
[11] A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Fizmatlit, M., 2004 (Russian)
[12] V.A. Marchenko, E.Ya. Khruslov, Homogenization of Partial Differential Equations, Birkhöuser, Boston–Basel–Berlin, 2006 | MR | Zbl
[13] V.G. Maz'ya, Sobolev Spaces, Izdatel'stvo LGU, L., 1985 (Russian) | Zbl
[14] T.A. Mel'nyk, O.A. Sivak, “Asymptotic Analysis of a Boundary-Value Problem with the Nonlinean Multiphase Interactions in a Perforated Domain”, Ukrain. Mat. Zh., 61:4 (2009), 494–512 | MR | Zbl
[15] A.N. Tikhonov, A.A. Samarskiy, Equations of the Mathematical Physics, Nauka, M., 1972 (Russian) | MR
[16] C. Timofte, “On the Homogenization of a Climatization Problem”, Studia Univ. Babes-Bolyai Math, LII:2 (2007), 117–125 | MR | Zbl
[17] C. Timofte, N. Cotfas, G. Pavel, “On the Asymptotic Behaviour of Some Elliptic Problems in Perforated Domains”, Romanian Rep. Phys., 64:1 (2012), 5–14