On eigenvalue distribution of random matrices of Ihara zeta function of large random graphs
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 3, pp. 268-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the ensemble of real symmetric random matrices $H^{(n,\rho)}$ obtained from the determinant form of the Ihara zeta function of random graphs that have $n$ vertices with the edge probability $\rho/n$. We prove that the normalized eigenvalue counting function of $H^{(n,\rho)}$ converges weakly in average as $n,\rho\to\infty$ and $\rho=o(n^\alpha)$ for any $\alpha>0$ to a shift of the Wigner semi-circle distribution. Our results support a conjecture that the large Erdős–Rényi random graphs satisfy in average the weak graph theory Riemann Hypothesis.
@article{JMAG_2017_13_3_a3,
     author = {O. Khorunzhiy},
     title = {On eigenvalue distribution of random matrices of {Ihara} zeta function of large random graphs},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {268--282},
     year = {2017},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_3_a3/}
}
TY  - JOUR
AU  - O. Khorunzhiy
TI  - On eigenvalue distribution of random matrices of Ihara zeta function of large random graphs
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 268
EP  - 282
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_3_a3/
LA  - en
ID  - JMAG_2017_13_3_a3
ER  - 
%0 Journal Article
%A O. Khorunzhiy
%T On eigenvalue distribution of random matrices of Ihara zeta function of large random graphs
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 268-282
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_3_a3/
%G en
%F JMAG_2017_13_3_a3
O. Khorunzhiy. On eigenvalue distribution of random matrices of Ihara zeta function of large random graphs. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 3, pp. 268-282. http://geodesic.mathdoc.fr/item/JMAG_2017_13_3_a3/

[1] H. Bass, “The Ihara–Zelberg Zeta Function of a Tree Lattice”, Internat. J. Math., 3 (1992), 717–797 | DOI | MR | Zbl

[2] B. Bollobás, Random Graphs, Cambridge Studies in Advances Mathematics, 73, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[3] G. Chinta, J. Jorgenson, A. Karlsson, “Heat Kernels on Regular Graphs and Generalized Ihara Zeta Function Formulas”, Monash. Math., 178 (2015), 171–190 | DOI | MR | Zbl

[4] B. Clair, S. Mokhtari-Sharghi, “Convergence of Zeta Function of Graphs”, Proc. Amer. Math. Soc., 130 (2002), 1881–1886 | DOI | MR | Zbl

[5] A. Coja-Oghlan, “On the Laplacian Eigenvalues of $G_{n,p}$”, Combin. Probab. Comput., 16 (2007), 923–946 | MR | Zbl

[6] U. Feige, E. Ofek, “Spectral Techniques Applied to Sparse Random Graphs”, Random Structures Algorithms, 27 (2005), 251–275 | DOI | MR | Zbl

[7] J. Friedman, A Proof of Alon's Second Eigenvalue Conjecture and Related Problems, Mem. Amer. Math. Soc., 195, no. 910, 2008, viii+100 pp. | MR

[8] J. Friedman, Formal Zeta Function Expansions and the Frequency of Ramanujan Graphs, 18 pp., arXiv: 1406.4557 [math.CO]

[9] Z. Füredi, J. Komlós, “The Eigenvalues of Random Symmetric Matrices”, Combinatorica, 1 (1981), 233–241 | DOI | MR | Zbl

[10] D. Guido, T. Isola, M.L. Lapidus, “A Trace on Fractal Graphs and the Ihara Zeta Function”, Trans. Amer. Math. Soc., 361 (2009), 3041–3070 | DOI | MR | Zbl

[11] R. Grigorchuk, A. Zuk, “The Ihara Zeta Function of Infinite Graphs, the KNS Spectral Measure and Integrable Maps”, Random walks and geometry, Walter de Gruyter GmbH Co. KG, Berlin, 2004, 141–180 | MR | Zbl

[12] M.D. Horton, H.M. Stark, A.A. Terras, What are Zeta Functions of Graphs and What are They Good for?, Quantum Graphs and Their Applications, Contemporary Mathematics, 415, 2006, 173–190 | DOI | MR

[13] Y. Ihara, “On Discrete Subgroups of the Two by Two Projective Linear Group over $\mathfrak p$-adic Fields”, J. Math. Soc. Japan, 18 (1966), 219–235 | DOI | MR | Zbl

[14] O. Khorunzhiy, “On High Moments and the Spectral Norm of Large Dilute Wigner Random Matrices”, Math. Phys., Analysis, Geom., 10 (2014), 64–125 | MR | Zbl

[15] O. Khorunzhiy, W. Kirsch, P. Müller, “Lifshitz Tails for Spectra of Erdős–Rényi Random Graphs”, Ann. Appl. Probab., 16 (2006), 295–309 | DOI | MR | Zbl

[16] O. Khorunzhiy, M. Shcherbina, V. Vengerovsky, “Eigenvalue Distribution of Large Weighted Random Graphs”, J. Math. Phys., 45 (2004), 1648–1672 | DOI | MR

[17] D. Lenz, F. Pogorzelski, M. Schmidt, The Ihara Zeta Function for Infinite Graphs, 38 pp., arXiv: 1408.3522 [math.MG]

[18] B.D. McKay, “The Expected Eigenvalue Distribution of a Large Regular Graph”, Linear Algebra Appl., 40 (1981), 203–216 | DOI | MR | Zbl

[19] M.L. Mehta, Random Matrices, Elsevier/Academic Press, Amsterdam, 2004 | MR | Zbl

[20] Sequence A001006, The On-Line Encyclopedia of Integer Sequences, , OEIS Foundation Inc., 2011 http://oeis.org

[21] C.E. Porter (ed.), Statistical Theories of Spectra: Fluctuations — a Collection of Reprints and Original Papers, Academic Press, New York, 1965

[22] P. Ren et al., “Quantum Walks, Ihara Zeta Functions and Cospectrality in Regular Graphs”, Quantum Inf. Process., 10 (2011), 405–417 | DOI | MR | Zbl

[23] H.M. Stark, A.A. Terras, “Zeta Functions of Finite Graphs and Coverings”, Adv. Math., 121 (1996), 124–165 | DOI | MR | Zbl

[24] A. Terras, Zeta Functions of Graphs, Cambridge Studies in Advanced Mathematics, 128, Cambridge University Press, Cambridge, 2011 | MR | Zbl

[25] A.A. Terras, H.M. Stark, “Zeta Functions of Finite Ggraphs and Coverings. III”, Adv. Math., 208 (2007), 467–489 | DOI | MR | Zbl

[26] E. Wigner, “Characteristic Vectors of Bordered Matrices with Infinite Dimensions”, Ann. of Math., 62 (1955), 548–564 | DOI | MR | Zbl

[27] D. Zhou, Y. Xiao, Y.-H. He, “Seiberg Duality, Quiver Theories, and Ihara's Zeta Function”, Internat. J. Modern Phys. A, 30 (2015), 1550118, 36 pp. | DOI | MR | Zbl