@article{JMAG_2017_13_2_a3,
author = {V. N. Levchuk},
title = {On one class of non-dissipative operators},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {173--194},
year = {2017},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a3/}
}
V. N. Levchuk. On one class of non-dissipative operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 173-194. http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a3/
[1] B.S. Pavlov, “Basicity of an Exponential System and Muckenhoupt's Condition”, Doklady Akademii Nauk SSSR, 247:1 (1979), 37–40 (Russian) | MR | Zbl
[2] S.V. Hruščev, N.K. Nikol'skii, B. S. Pavlov, “Unconditional Bases of Exponentials and of Reproducing Kernels”, Complex Analysis and Spectral Theory, Lectures Notes in Math., 864, 1981, 214–335 | DOI | MR
[3] G.M. Gubreev, Selected works, “Serednyak T. K.”, Dnepropetrovsk, 2014 (Russian)
[4] G.M. Gubreev, V. N. Levchuk, “Description of Unconditional Bases Formed by Values of the Dunkl Kernels”, Functional Analysis and Its Application, 49:1 (2015), 60–63 | DOI | MR
[5] R. Hatamleh, V. A. Zolotarev, “On Model Representations of Non-Selfadjoint Operator with Infinitely Dimensional Imaginary Component”, J. Math. Phys., Anal., Geom., 11:2 (2015), 174–186 | MR | Zbl
[6] V. A. Zolotarev, Analytical Methods of Spectral Representations of Non-Selfadjoint and Non-Unitary Operators, Kharkiv National University Publishing House, Mag-Press, Kharkiv, 2003 (Russian)
[7] I. C. Gohberg, M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Translations of Mathematical Monographs, 24, 1970 | MR
[8] E. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., 1955 | MR | Zbl
[9] N.I. Akhiezer, Elements of the Theory of Elliptic Functions, American Mathematical Society, Providence, RI, 1990 | MR | Zbl
[10] B.Ya. Levin, Lectures on Entire Functions, Transl. Math. Soc., Providence, RI, 1997 | MR
[11] L. de Branges, Hilbert Spaces of Entire Functions, Prentice Hall, London, 1968 | MR | Zbl