On one class of non-dissipative operators
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 173-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The non-dissipative operator of integration is studied in the weight space. Its similarity to the operator of integration in the space without weight is proved. The functional model for this operator is obtained.
@article{JMAG_2017_13_2_a3,
     author = {V. N. Levchuk},
     title = {On one class of non-dissipative operators},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {173--194},
     year = {2017},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a3/}
}
TY  - JOUR
AU  - V. N. Levchuk
TI  - On one class of non-dissipative operators
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 173
EP  - 194
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a3/
LA  - en
ID  - JMAG_2017_13_2_a3
ER  - 
%0 Journal Article
%A V. N. Levchuk
%T On one class of non-dissipative operators
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 173-194
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a3/
%G en
%F JMAG_2017_13_2_a3
V. N. Levchuk. On one class of non-dissipative operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 173-194. http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a3/

[1] B.S. Pavlov, “Basicity of an Exponential System and Muckenhoupt's Condition”, Doklady Akademii Nauk SSSR, 247:1 (1979), 37–40 (Russian) | MR | Zbl

[2] S.V. Hruščev, N.K. Nikol'skii, B. S. Pavlov, “Unconditional Bases of Exponentials and of Reproducing Kernels”, Complex Analysis and Spectral Theory, Lectures Notes in Math., 864, 1981, 214–335 | DOI | MR

[3] G.M. Gubreev, Selected works, “Serednyak T. K.”, Dnepropetrovsk, 2014 (Russian)

[4] G.M. Gubreev, V. N. Levchuk, “Description of Unconditional Bases Formed by Values of the Dunkl Kernels”, Functional Analysis and Its Application, 49:1 (2015), 60–63 | DOI | MR

[5] R. Hatamleh, V. A. Zolotarev, “On Model Representations of Non-Selfadjoint Operator with Infinitely Dimensional Imaginary Component”, J. Math. Phys., Anal., Geom., 11:2 (2015), 174–186 | MR | Zbl

[6] V. A. Zolotarev, Analytical Methods of Spectral Representations of Non-Selfadjoint and Non-Unitary Operators, Kharkiv National University Publishing House, Mag-Press, Kharkiv, 2003 (Russian)

[7] I. C. Gohberg, M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Translations of Mathematical Monographs, 24, 1970 | MR

[8] E. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., 1955 | MR | Zbl

[9] N.I. Akhiezer, Elements of the Theory of Elliptic Functions, American Mathematical Society, Providence, RI, 1990 | MR | Zbl

[10] B.Ya. Levin, Lectures on Entire Functions, Transl. Math. Soc., Providence, RI, 1997 | MR

[11] L. de Branges, Hilbert Spaces of Entire Functions, Prentice Hall, London, 1968 | MR | Zbl