@article{JMAG_2017_13_2_a2,
author = {M. Goncharenko and L. Khilkova},
title = {Homogenized model of non-stationary diffusion in porous media with the drift},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {154--172},
year = {2017},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a2/}
}
TY - JOUR AU - M. Goncharenko AU - L. Khilkova TI - Homogenized model of non-stationary diffusion in porous media with the drift JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2017 SP - 154 EP - 172 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a2/ LA - en ID - JMAG_2017_13_2_a2 ER -
M. Goncharenko; L. Khilkova. Homogenized model of non-stationary diffusion in porous media with the drift. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 154-172. http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a2/
[1] N.S. Bakhvalov, G. N. Panasenko, Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials, Nauka, M., 1984 (Russian) | MR | Zbl
[2] A. Beliaev, “Homogenization of a Parabolic Operator with Signorini Boundary Conditions in Perforated Domains”, Asymptot. Anal., 40 (2004), 255–268 | MR | Zbl
[3] A. Bensoussan, J. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1978 | MR | Zbl
[4] L. V. Berlyand, M. V. Goncharenko, “Homogenization of the Diffusion Equation in Porous Media with Absorptions”, Teor. Funkts., Func. Analis i ikh Prilozhen., 52 (1989), 112–121 (Russian)
[5] B. Cabarrubias, P. Donato, “Homogenization of a Quasilinear Elliptic Problem with Nonlinear Robin Boundary Condition”, Appl. Anal.: An Intern. J., 91:6 (2012), 1111–1127 | DOI | MR | Zbl
[6] B. Calmuschi, C. Timofte, “Upscaling of Chemical Reactive Flows in Porous Media”, «Caius Iacob» Conference on Fluid Mechanics and Texnical Appl. (Bucharest, 2005), 1–9 | MR
[7] D. Cioranescu, J. Saint Jean Paulin, Homogenization of Reticulated Structures, Applied Mathematical Scienses, 136, Springer-Verlag, New York, 1999 | DOI | MR | Zbl
[8] D. Cioranescu, P. Donato, “Homogenesation du Proble`me de Neumann non Homoge`ne dans des Ouverts Perfores”, Asymptot. Anal., 1 (1988), 115–138 | MR | Zbl
[9] D. Cioranescu, P. Donato, R. Zaki, “The Periodic Unfolding and Robin Problems in Perforated Domains”, C. R.A.S. Paris, Ser. 1, 342 (2006), 467–474 | MR
[10] C. Conca, J. Diaz, C. Timofte, “Effective Chemical Processes in Porous Media”, Math. Models and Methods Appl. Sci., 13:10 (2003), 1437–1462 | DOI | MR | Zbl
[11] C. Conca, J. Diaz, A. Linan, C. Timofte, “Homogenization in Chemical Reactive Floes”, Electron. J. Diff. Eq., 40 (2004), 1–22 | MR
[12] M. V. Goncharenko, L. A. Khilkova, “Homogenized Model of Diffusion in Porous Media with Nonlinear Absorption at the Boundary”, Ukr. Matem. Zhurn., 67:9 (2015), 1201–1216 (Russian)
[13] M. V. Goncharenko, L. A. Khilkova, “Homogenized Model of Diffusion in a Locally-Periodic Porous Media with Nonlinear Absorption at the Boundary”, Dopovidi NANU, 10:6 (2016) (Russian) | MR
[14] K. Iosida, Functional Analysis, Mir, M., 1967 (Russian) | MR
[15] A.N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Fizmatlit, M., 2004 (Russian)
[16] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid, Nauka, M., 1970 (Russian) | MR
[17] O.A. Ladyzhenskaya, V.A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (Russian) | Zbl
[18] V.A. Marchenko, E. Ya. Khruslov, Homogenized Models of Micro-Inhomogeneous Media, Naukova dumka, Kiev, 2005 (Russian)
[19] V.G. Maz'ya, Sobolev Spaces, Izdatel'stvo LGU, L., 1985 (Russian) | MR | Zbl
[20] T. A. Mel'nyk, D. Yu. Sadovyy, “Homogenization of Quasilinear Parabolic Problem with Different Nonlinear Boundary Conditions Fourier Alternating in a Thick Two-Level Junction of the Type 3:2:2”, Ukr. Matem. Zhurn., 63:12 (2011), 1632–1656 (Ukrainian) | MR
[21] T. A. Mel'nyk, O. A. Sivak, “Asymptotic Analysis of a Boundary-Value Problem with the Nonlinean Multiphase Interactions in a Perforated Domain”, Ukr. Matem. Zhurn., 61:4 (2009), 494–512 | MR | Zbl
[22] T. A. Mel'nyk, O. A. Sivak, “Asymptotic Analysis of a Parabolic Semilinear Problem with the Nonlinean Boundary Multiphase Interactions in a Perforated Domain”, J. Math. Sci., 164:3 (2010), 1–27 | MR
[23] T. A. Mel'nyk, O. A. Sivak, “Asymptotic Approximations for Solutions to Quasilinear and Linear Parabolic Problems with Different Perturbed Boundary Conditions in Perforated Domains”, J. Math. Sci., 177:1 (2011), 50–70 | DOI | MR
[24] O.A. Oleinik, G.A. Yosifian, A. S. Shamaev, Mathematical Problems in the Theory of Strongly Inhomogeneous Elastic Media, Izdatel'stvo MGU, M., 1990 (Russian) | MR | Zbl
[25] A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997 | MR | Zbl
[26] A.L. Piatnitski, G.A. Chechkin, A. S. Shamaev, Homogenization: Methods and Applications, Tamara Rozhkovskaya Press, Novosibirsk, 2007 (Russian) | MR
[27] A. Piatnitski, V. Rybalko, “Homogenization of Boundary Value Problems for Monotone Operators in Perforated Domains with Rapidly Oscillating Boundary Conditions of Fourier Type”, J. Math. Sci., 177:1 (2011), 109–140 | DOI | MR | Zbl
[28] E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, New York, 1980 | MR | Zbl
[29] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, AMS, Providence, 1997 | MR
[30] L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Springer, Heidelberg–Dordrecht–London–New York, 2009 | MR | Zbl
[31] C. Timofte, “Homogenization in Nonlinear Chemical Reactive Flows”, Proc. of the 9th WSEAS Intern. Conference on Appl. Math. (Istambul, 2006), 250–255 | MR
[32] C. Timofte, “On the Homogenization of a Climatization Problem”, Studia Univ. “Babes-Bolyai”, LII:2 (2007), 117–125 | MR | Zbl
[33] C. Timofte, “Multiscale Analysis of Ionic Transport in Periodic Charged Media”, Biomath, 2:2 (2013), 1–5 | MR
[34] C. Timofte, N. Cotfas, G. Pavel, “On the Asymptotic Behaviour of Some Elliptic Problems in Perforated Domains”, Romanian Reports in Phys., 64:1 (2012), 5–14 | MR
[35] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators, Fizmatlit, M., 1993 (Russian) | MR | Zbl