Homogenized model of non-stationary diffusion in porous media with the drift
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 154-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process.
@article{JMAG_2017_13_2_a2,
     author = {M. Goncharenko and L. Khilkova},
     title = {Homogenized model of non-stationary diffusion in porous media with the drift},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {154--172},
     year = {2017},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a2/}
}
TY  - JOUR
AU  - M. Goncharenko
AU  - L. Khilkova
TI  - Homogenized model of non-stationary diffusion in porous media with the drift
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 154
EP  - 172
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a2/
LA  - en
ID  - JMAG_2017_13_2_a2
ER  - 
%0 Journal Article
%A M. Goncharenko
%A L. Khilkova
%T Homogenized model of non-stationary diffusion in porous media with the drift
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 154-172
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a2/
%G en
%F JMAG_2017_13_2_a2
M. Goncharenko; L. Khilkova. Homogenized model of non-stationary diffusion in porous media with the drift. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 154-172. http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a2/

[1] N.S. Bakhvalov, G. N. Panasenko, Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials, Nauka, M., 1984 (Russian) | MR | Zbl

[2] A. Beliaev, “Homogenization of a Parabolic Operator with Signorini Boundary Conditions in Perforated Domains”, Asymptot. Anal., 40 (2004), 255–268 | MR | Zbl

[3] A. Bensoussan, J. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1978 | MR | Zbl

[4] L. V. Berlyand, M. V. Goncharenko, “Homogenization of the Diffusion Equation in Porous Media with Absorptions”, Teor. Funkts., Func. Analis i ikh Prilozhen., 52 (1989), 112–121 (Russian)

[5] B. Cabarrubias, P. Donato, “Homogenization of a Quasilinear Elliptic Problem with Nonlinear Robin Boundary Condition”, Appl. Anal.: An Intern. J., 91:6 (2012), 1111–1127 | DOI | MR | Zbl

[6] B. Calmuschi, C. Timofte, “Upscaling of Chemical Reactive Flows in Porous Media”, «Caius Iacob» Conference on Fluid Mechanics and Texnical Appl. (Bucharest, 2005), 1–9 | MR

[7] D. Cioranescu, J. Saint Jean Paulin, Homogenization of Reticulated Structures, Applied Mathematical Scienses, 136, Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[8] D. Cioranescu, P. Donato, “Homogenesation du Proble`me de Neumann non Homoge`ne dans des Ouverts Perfores”, Asymptot. Anal., 1 (1988), 115–138 | MR | Zbl

[9] D. Cioranescu, P. Donato, R. Zaki, “The Periodic Unfolding and Robin Problems in Perforated Domains”, C. R.A.S. Paris, Ser. 1, 342 (2006), 467–474 | MR

[10] C. Conca, J. Diaz, C. Timofte, “Effective Chemical Processes in Porous Media”, Math. Models and Methods Appl. Sci., 13:10 (2003), 1437–1462 | DOI | MR | Zbl

[11] C. Conca, J. Diaz, A. Linan, C. Timofte, “Homogenization in Chemical Reactive Floes”, Electron. J. Diff. Eq., 40 (2004), 1–22 | MR

[12] M. V. Goncharenko, L. A. Khilkova, “Homogenized Model of Diffusion in Porous Media with Nonlinear Absorption at the Boundary”, Ukr. Matem. Zhurn., 67:9 (2015), 1201–1216 (Russian)

[13] M. V. Goncharenko, L. A. Khilkova, “Homogenized Model of Diffusion in a Locally-Periodic Porous Media with Nonlinear Absorption at the Boundary”, Dopovidi NANU, 10:6 (2016) (Russian) | MR

[14] K. Iosida, Functional Analysis, Mir, M., 1967 (Russian) | MR

[15] A.N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Fizmatlit, M., 2004 (Russian)

[16] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid, Nauka, M., 1970 (Russian) | MR

[17] O.A. Ladyzhenskaya, V.A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (Russian) | Zbl

[18] V.A. Marchenko, E. Ya. Khruslov, Homogenized Models of Micro-Inhomogeneous Media, Naukova dumka, Kiev, 2005 (Russian)

[19] V.G. Maz'ya, Sobolev Spaces, Izdatel'stvo LGU, L., 1985 (Russian) | MR | Zbl

[20] T. A. Mel'nyk, D. Yu. Sadovyy, “Homogenization of Quasilinear Parabolic Problem with Different Nonlinear Boundary Conditions Fourier Alternating in a Thick Two-Level Junction of the Type 3:2:2”, Ukr. Matem. Zhurn., 63:12 (2011), 1632–1656 (Ukrainian) | MR

[21] T. A. Mel'nyk, O. A. Sivak, “Asymptotic Analysis of a Boundary-Value Problem with the Nonlinean Multiphase Interactions in a Perforated Domain”, Ukr. Matem. Zhurn., 61:4 (2009), 494–512 | MR | Zbl

[22] T. A. Mel'nyk, O. A. Sivak, “Asymptotic Analysis of a Parabolic Semilinear Problem with the Nonlinean Boundary Multiphase Interactions in a Perforated Domain”, J. Math. Sci., 164:3 (2010), 1–27 | MR

[23] T. A. Mel'nyk, O. A. Sivak, “Asymptotic Approximations for Solutions to Quasilinear and Linear Parabolic Problems with Different Perturbed Boundary Conditions in Perforated Domains”, J. Math. Sci., 177:1 (2011), 50–70 | DOI | MR

[24] O.A. Oleinik, G.A. Yosifian, A. S. Shamaev, Mathematical Problems in the Theory of Strongly Inhomogeneous Elastic Media, Izdatel'stvo MGU, M., 1990 (Russian) | MR | Zbl

[25] A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997 | MR | Zbl

[26] A.L. Piatnitski, G.A. Chechkin, A. S. Shamaev, Homogenization: Methods and Applications, Tamara Rozhkovskaya Press, Novosibirsk, 2007 (Russian) | MR

[27] A. Piatnitski, V. Rybalko, “Homogenization of Boundary Value Problems for Monotone Operators in Perforated Domains with Rapidly Oscillating Boundary Conditions of Fourier Type”, J. Math. Sci., 177:1 (2011), 109–140 | DOI | MR | Zbl

[28] E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, New York, 1980 | MR | Zbl

[29] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, AMS, Providence, 1997 | MR

[30] L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Springer, Heidelberg–Dordrecht–London–New York, 2009 | MR | Zbl

[31] C. Timofte, “Homogenization in Nonlinear Chemical Reactive Flows”, Proc. of the 9th WSEAS Intern. Conference on Appl. Math. (Istambul, 2006), 250–255 | MR

[32] C. Timofte, “On the Homogenization of a Climatization Problem”, Studia Univ. “Babes-Bolyai”, LII:2 (2007), 117–125 | MR | Zbl

[33] C. Timofte, “Multiscale Analysis of Ionic Transport in Periodic Charged Media”, Biomath, 2:2 (2013), 1–5 | MR

[34] C. Timofte, N. Cotfas, G. Pavel, “On the Asymptotic Behaviour of Some Elliptic Problems in Perforated Domains”, Romanian Reports in Phys., 64:1 (2012), 5–14 | MR

[35] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators, Fizmatlit, M., 1993 (Russian) | MR | Zbl