@article{JMAG_2017_13_2_a1,
author = {M. S. Filipkovska and V. P. Kotlyarov and E. A. Melamedova (Moskovchenko)},
title = {Maxwell{\textendash}Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix {Riemann{\textendash}Hilbert} problems},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {119--153},
year = {2017},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a1/}
}
TY - JOUR AU - M. S. Filipkovska AU - V. P. Kotlyarov AU - E. A. Melamedova (Moskovchenko) TI - Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2017 SP - 119 EP - 153 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a1/ LA - en ID - JMAG_2017_13_2_a1 ER -
%0 Journal Article %A M. S. Filipkovska %A V. P. Kotlyarov %A E. A. Melamedova (Moskovchenko) %T Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2017 %P 119-153 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a1/ %G en %F JMAG_2017_13_2_a1
M. S. Filipkovska; V. P. Kotlyarov; E. A. Melamedova (Moskovchenko). Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 119-153. http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a1/
[1] M. J. Ablowits, D. Kaup, A. C. Newell, “Coherent Pulse Propagation, a Dispersive, Irreversible Phenomenon”, J. Math. Phys., 15 (1974), 1852–1858 | DOI
[2] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl
[3] A. Boutet de Monvel, V. P. Kotlyarov, “Scattering Problem for the Zakharov–Shabat Equations on the Semi-Axis”, Inverse Problems, 16 (2000), 1813–1837 | DOI | MR | Zbl
[4] A. Boutet de Monvel, V. P. Kotlyarov, “Generation of Asymptotic solitons of the Nonlinear Schrödinger Equation by Boundary Data”, J. Math. Phys., 44 (2003), 3185–3215 | DOI | MR | Zbl
[5] A. Boutet de Monvel, V. Kotlyarov, “Focusing Nonlinear Schrödinger Equation on the Quarter Plane with Time-Periodic Boundary Condition: a Riemann- Hilbert approach”, J. Institute Mathem. Jussieu, 6 (2007), 579–611 | DOI | MR | Zbl
[6] A. Boutet de Monvel, A.S. Fokas, D. Shepelsky,, “Integrable Nonlinear Evolution Equations on a Finite Interval”, Commun. Math. Phys., 263 (2006), 133–172 | DOI | MR | Zbl
[7] A. Boutet de Monvel, D. Shepelsky, “The Camassa-Holm Equation on the Half-Line: a Riemann-Hilbert Approach”, J. Geom. Anal., 18 (2008), 285–323 | DOI | MR | Zbl
[8] P. Deift,, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, CIMS NY University, 1999 | MR
[9] L. D. Fadeev, L. A. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987 | MR
[10] A. S. Fokas, “A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs”, Proc. R. Soc. Lond. A., 453 (1997), 1411–1443 | DOI | MR | Zbl
[11] A. S. Fokas, A. R. Its, “The Linearization of the Initial Boundary Value Problem of the Nonlinear Schrödinger Equation”, SIAM J. Math. Anal., 27 (1996), 738–764 | DOI | MR | Zbl
[12] A. S. Fokas, A. R. Its, “An Initial Boundary Value Problem for the Korteweg de Vries Equation”, Mathem. Computer Simulat., 37 (1994), 293–321 | DOI | MR | Zbl
[13] A. S. Fokas, A. R. Its, “An Initial Boundary Value Problem for the sine-Gordon Equation in laboratory coordinates”, Teor. Mat. Fiz., 92 (1992), 387–403 | DOI | MR | Zbl
[14] I. R. Gabitov, A.V. Mikhailov, V. E. Zakharov, “Superfluorescence pulse shape”, JETP Lett., 37:5 (1983), 279–282
[15] I. R. Gabitov, A.V. Mikhailov, V. E. Zakharov, “Nonlinear theory of superflourescence”, Sov. Phys. JETP, 59:4 (1984), 703–709
[16] I. R. Gabitov, V.E. Zakharov, A. V. Mikhailov, “Maxwell–Bloch Equations and Inverse Scattering Transform Method”, Teor. Mat. Fiz., 63 (1985), 11–31 | DOI | MR
[17] D. J. Kaup, “Coherent Pulse Propagation: a comparison of the Complete Solution with the McCall–Hahn Theory and Others”, Phys. Rev. A, 16 (1977), 704–719 | DOI
[18] O. M. Kiselev,, “Solution of Goursat Problem for Maxwell–Bloch Equations”, Teor. Mat. Fiz., 98 (1994), 29–37 | DOI | MR | Zbl
[19] V. P. Kotlyarov, “Complete Linearization of a Mixed Problem to the Maxwell–Bloch Equations by Matrix Riemann–Hilbert Problem”, J. Phys. A: Math. Theor., 46 (2013), 285206 | DOI | MR | Zbl
[20] V. P. Kotlyrov, E. A. Moskovchenko, “Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening”, J. Math. Phys., Anal., Geom., 10 (2014), 328–349 | MR
[21] E. A. Moskovchenko, V. P. Kotlyrov, “A new Riemann–Hilbert Problem in a Model of Stimulated Raman Scattering”, J. Phys. A: Math. Gen., 39 (2006), 14591–14610 | DOI | MR | Zbl
[22] G. L. Lamb Jr., “Propagation of Ultrashort Optical Pulses”, Phys. Lett. A, 25 (1967), 181–182 | DOI
[23] G. L. Lamb Jr., “Analytical Descriptions to Ultrashort Optical Pulse Propagation in Resonant Media”, Rev. Mod. Phys., 43 (1971), 99–124 | DOI | MR
[24] G. L. Lamb Jr., “Phase Variation in Coherent-Optical-Pulse Propagation”, Phys. Rev. Lett., 31 (1973), 196–199 | DOI
[25] G. L. Lamb Jr., “Coherent-Optical-Pulse Propagation as an Inverse Problem”, Phys. Rev. A, 9 (1974), 422–430 | DOI
[26] G. Litvinchuk, I. Spitkovskii, Factorization of Measurable Matrix Functions, Springer Basel AG, Birkhäuser Basel, 1987 | MR
[27] Sov. Phys. JETP, 56:1 (1982), 37–44
[28] S. V. Manakov, V. Yu. Novokshenov, “Complete Asymptotic Representation of Electromagnetic Pulse in a Long Two-Level Amplifier”, Teor. Mat. Fiz., 69 (1986), 40–54 | DOI | Zbl
[29] V. E. Zakharov, “Propagation of an Amplifying Pulse in a Two-Level Medium”, JETP Lett., 32 (1980), 589–593
[30] S. M. Zakharov, E. M. Manykin, “The Inverse Scattering Formalism in the Theory of Photon (Light) Echo”, Sov. Phys. JETP, 55:2 (1982), 227–231
[31] X. Zhou, “The Riemann–Hilbert Problem and Inverse Scattering”, SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl