Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 119-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mixed initial-boundary value problem for nonlinear Maxwell–Bloch (MB) equations without spectral broadening is studied by using the inverse scattering transform in the form of the matrix Riemann–Hilbert (RH) problem. We use transformation operators whose existence is closely related with the Goursat problems with nontrivial characteristics. We also use a gauge transformation which allows us to obtain Goursat problems of the canonical type with rectilinear characteristics, the solvability of which is known. The transformation operators and a gauge transformation are used to obtain the Jost type solutions of the Ablowitz–Kaup–Newel–Segur equations with well-controlled asymptotic behavior by the spectral parameter near singular points. A well posed regular matrix RH problem in the sense of the feasibility of the Schwartz symmetry principle is obtained. The matrix RH problem generates the solution of the mixed problem for MB equations.
@article{JMAG_2017_13_2_a1,
     author = {M. S. Filipkovska and V. P. Kotlyarov and E. A. Melamedova (Moskovchenko)},
     title = {Maxwell{\textendash}Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix {Riemann{\textendash}Hilbert} problems},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {119--153},
     year = {2017},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a1/}
}
TY  - JOUR
AU  - M. S. Filipkovska
AU  - V. P. Kotlyarov
AU  - E. A. Melamedova (Moskovchenko)
TI  - Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 119
EP  - 153
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a1/
LA  - en
ID  - JMAG_2017_13_2_a1
ER  - 
%0 Journal Article
%A M. S. Filipkovska
%A V. P. Kotlyarov
%A E. A. Melamedova (Moskovchenko)
%T Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 119-153
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a1/
%G en
%F JMAG_2017_13_2_a1
M. S. Filipkovska; V. P. Kotlyarov; E. A. Melamedova (Moskovchenko). Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 119-153. http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a1/

[1] M. J. Ablowits, D. Kaup, A. C. Newell, “Coherent Pulse Propagation, a Dispersive, Irreversible Phenomenon”, J. Math. Phys., 15 (1974), 1852–1858 | DOI

[2] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl

[3] A. Boutet de Monvel, V. P. Kotlyarov, “Scattering Problem for the Zakharov–Shabat Equations on the Semi-Axis”, Inverse Problems, 16 (2000), 1813–1837 | DOI | MR | Zbl

[4] A. Boutet de Monvel, V. P. Kotlyarov, “Generation of Asymptotic solitons of the Nonlinear Schrödinger Equation by Boundary Data”, J. Math. Phys., 44 (2003), 3185–3215 | DOI | MR | Zbl

[5] A. Boutet de Monvel, V. Kotlyarov, “Focusing Nonlinear Schrödinger Equation on the Quarter Plane with Time-Periodic Boundary Condition: a Riemann- Hilbert approach”, J. Institute Mathem. Jussieu, 6 (2007), 579–611 | DOI | MR | Zbl

[6] A. Boutet de Monvel, A.S. Fokas, D. Shepelsky,, “Integrable Nonlinear Evolution Equations on a Finite Interval”, Commun. Math. Phys., 263 (2006), 133–172 | DOI | MR | Zbl

[7] A. Boutet de Monvel, D. Shepelsky, “The Camassa-Holm Equation on the Half-Line: a Riemann-Hilbert Approach”, J. Geom. Anal., 18 (2008), 285–323 | DOI | MR | Zbl

[8] P. Deift,, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, CIMS NY University, 1999 | MR

[9] L. D. Fadeev, L. A. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987 | MR

[10] A. S. Fokas, “A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs”, Proc. R. Soc. Lond. A., 453 (1997), 1411–1443 | DOI | MR | Zbl

[11] A. S. Fokas, A. R. Its, “The Linearization of the Initial Boundary Value Problem of the Nonlinear Schrödinger Equation”, SIAM J. Math. Anal., 27 (1996), 738–764 | DOI | MR | Zbl

[12] A. S. Fokas, A. R. Its, “An Initial Boundary Value Problem for the Korteweg de Vries Equation”, Mathem. Computer Simulat., 37 (1994), 293–321 | DOI | MR | Zbl

[13] A. S. Fokas, A. R. Its, “An Initial Boundary Value Problem for the sine-Gordon Equation in laboratory coordinates”, Teor. Mat. Fiz., 92 (1992), 387–403 | DOI | MR | Zbl

[14] I. R. Gabitov, A.V. Mikhailov, V. E. Zakharov, “Superfluorescence pulse shape”, JETP Lett., 37:5 (1983), 279–282

[15] I. R. Gabitov, A.V. Mikhailov, V. E. Zakharov, “Nonlinear theory of superflourescence”, Sov. Phys. JETP, 59:4 (1984), 703–709

[16] I. R. Gabitov, V.E. Zakharov, A. V. Mikhailov, “Maxwell–Bloch Equations and Inverse Scattering Transform Method”, Teor. Mat. Fiz., 63 (1985), 11–31 | DOI | MR

[17] D. J. Kaup, “Coherent Pulse Propagation: a comparison of the Complete Solution with the McCall–Hahn Theory and Others”, Phys. Rev. A, 16 (1977), 704–719 | DOI

[18] O. M. Kiselev,, “Solution of Goursat Problem for Maxwell–Bloch Equations”, Teor. Mat. Fiz., 98 (1994), 29–37 | DOI | MR | Zbl

[19] V. P. Kotlyarov, “Complete Linearization of a Mixed Problem to the Maxwell–Bloch Equations by Matrix Riemann–Hilbert Problem”, J. Phys. A: Math. Theor., 46 (2013), 285206 | DOI | MR | Zbl

[20] V. P. Kotlyrov, E. A. Moskovchenko, “Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening”, J. Math. Phys., Anal., Geom., 10 (2014), 328–349 | MR

[21] E. A. Moskovchenko, V. P. Kotlyrov, “A new Riemann–Hilbert Problem in a Model of Stimulated Raman Scattering”, J. Phys. A: Math. Gen., 39 (2006), 14591–14610 | DOI | MR | Zbl

[22] G. L. Lamb Jr., “Propagation of Ultrashort Optical Pulses”, Phys. Lett. A, 25 (1967), 181–182 | DOI

[23] G. L. Lamb Jr., “Analytical Descriptions to Ultrashort Optical Pulse Propagation in Resonant Media”, Rev. Mod. Phys., 43 (1971), 99–124 | DOI | MR

[24] G. L. Lamb Jr., “Phase Variation in Coherent-Optical-Pulse Propagation”, Phys. Rev. Lett., 31 (1973), 196–199 | DOI

[25] G. L. Lamb Jr., “Coherent-Optical-Pulse Propagation as an Inverse Problem”, Phys. Rev. A, 9 (1974), 422–430 | DOI

[26] G. Litvinchuk, I. Spitkovskii, Factorization of Measurable Matrix Functions, Springer Basel AG, Birkhäuser Basel, 1987 | MR

[27] Sov. Phys. JETP, 56:1 (1982), 37–44

[28] S. V. Manakov, V. Yu. Novokshenov, “Complete Asymptotic Representation of Electromagnetic Pulse in a Long Two-Level Amplifier”, Teor. Mat. Fiz., 69 (1986), 40–54 | DOI | Zbl

[29] V. E. Zakharov, “Propagation of an Amplifying Pulse in a Two-Level Medium”, JETP Lett., 32 (1980), 589–593

[30] S. M. Zakharov, E. M. Manykin, “The Inverse Scattering Formalism in the Theory of Photon (Light) Echo”, Sov. Phys. JETP, 55:2 (1982), 227–231

[31] X. Zhou, “The Riemann–Hilbert Problem and Inverse Scattering”, SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl