Asymptotic behavior of fractional derivatives of bounded analytic functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 107-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find sharp sufficient conditions for the boundedness of fractional derivatives of a bounded analytic function in a Stolz angle. If $F\neq0$ in the unit disc, the necessary and sufficient conditions for the boundedness of fractional derivatives of its argument in a Stolz angle are established.
@article{JMAG_2017_13_2_a0,
     author = {I. Chyzhykov and Yu. Kosaniak},
     title = {Asymptotic behavior of fractional derivatives of bounded analytic functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {107--118},
     year = {2017},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a0/}
}
TY  - JOUR
AU  - I. Chyzhykov
AU  - Yu. Kosaniak
TI  - Asymptotic behavior of fractional derivatives of bounded analytic functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 107
EP  - 118
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a0/
LA  - en
ID  - JMAG_2017_13_2_a0
ER  - 
%0 Journal Article
%A I. Chyzhykov
%A Yu. Kosaniak
%T Asymptotic behavior of fractional derivatives of bounded analytic functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 107-118
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a0/
%G en
%F JMAG_2017_13_2_a0
I. Chyzhykov; Yu. Kosaniak. Asymptotic behavior of fractional derivatives of bounded analytic functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 2, pp. 107-118. http://geodesic.mathdoc.fr/item/JMAG_2017_13_2_a0/

[1] P. R. Ahern, D. N. Clark, “Radial Nth derivatives of Blaschke products”, Math. Scan., 72 (1971), 189–201 | DOI | MR

[2] P. R. Ahern, D. N. Clark, “On Inner Functions with $H^p$-derivatives”, Michigan Math. J., 21 (1974), 115–127 | DOI | MR | Zbl

[3] A. Baranov, A. Hartmann, K. Kellay, Geometry of Reproducing Kernels in Model Spaces Near the Boundary, 30 Sep 2015, arXiv: 1509.09077v1 | MR

[4] C. Carathéodory, Theory of Functions of a Complex Variable, v. 2, Chelsea Publ. Co., New York, 1954 | MR

[5] G. T. Cargo, “Angular and Tangential Limits of Blaschke Products and their Successive Derivatives”, Canad. J. Math., 14 (1962), 334–348 | DOI | MR | Zbl

[6] I. Chyzhykov, “Argument of Bounded Analytic Functions and Frostman's Type Conditions”, Ill. J. Math., 53:2 (2009), 515–531 | MR | Zbl

[7] E. F. Collingwood, A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, 1966 | MR | Zbl

[8] M. M. Djrbashain, Integral Transforms and Representations of Functions in a Complex Domain, Nauka, M., 1966 (Russian)

[9] P. Duren, Theory of $H^{p}$ Spaces, Academic Press, New York, 1970 | MR

[10] D. Gilera, J.A. Peláez, D. Vukotić, “Itergrability of the Derivative of a Blaschke Product”, Proc. Edinburg Math. Soc., 50 (2007), 673–688 | MR

[11] G. M. Golusin, Geometric Theory of Functions of a Complex Variable, Nauka, M., 1966 (Russian) | MR

[12] O. Frostman, “Sur le Produits de Blaschke”, K. Fysiogr. Sallsk. Lund Forh., 12 (1939), 1–14 | MR

[13] K.-K. Leung, C. N. Linden, “Asymptotic Values of Modulus 1 of Blaschke Products”, Trans. Amer. Math. Soc., 203 (1975), 107–118 | MR | Zbl

[14] A. V. Rybkin, “Convergence of Arguments of Blaschke Products in $L_{p}$-metrics”, Proc. Amer. Math. Soc., 111 (1991), 701–708 | MR | Zbl

[15] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl