@article{JMAG_2017_13_1_a2,
author = {S. O. Serbenyuk},
title = {Continuous functions with complicated local structure defined in terms of alternating {Cantor} series representation of numbers},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {57--81},
year = {2017},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a2/}
}
TY - JOUR AU - S. O. Serbenyuk TI - Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2017 SP - 57 EP - 81 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a2/ LA - en ID - JMAG_2017_13_1_a2 ER -
%0 Journal Article %A S. O. Serbenyuk %T Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2017 %P 57-81 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a2/ %G en %F JMAG_2017_13_1_a2
S. O. Serbenyuk. Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 1, pp. 57-81. http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a2/
[1] O.M. Baranovskyi, I.M. Pratsiovyta, M. V. Pratsiovytyi, “On One Function Related to First and Second Ostrogradsky Series”, Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math., 10 (2009), 40–49 (Ukrainian)
[2] M.V. Pratsiovytyi, Fractal Approach to Investigation of Singular Probability Distributions, Dragomanov Nat. Pedagogical Univ. Publ., Kyiv, 1998 (Ukrainian)
[3] M.V. Pratsiovytyi, A. V. Kalashnikov, “On One Class of Continuous Functions with Complicated Local Structure, Most of which are Singular or Nondifferentiable”, Trudy Instituta Prikladnoi Matematiki i Mekhaniki NAN Ukrainy, 23 (2011), 178–189 (Ukrainian) | MR
[4] S.O. Serbenyuk, “On One Nearly Everywhere Continuous and Nowhere Differentiable Function, that Defined by Automaton with Finite Memory”, Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math., 13:2 (2012), 166–182 (Ukrainian) https://www.researchgate.net/publication/292970012
[5] S.O. Serbenyuk, “Representation of Numbers by the Positive Cantor Series: Expansion for Rational Numbers”, Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math., 14 (2013), 253–267 (Ukrainian) https://www.researchgate.net/publication/283909906
[6] S.O. Serbenyuk, “On Some Sets of Real Numbers Such that Defined by Nega-sadic and Cantor Nega-s-adic Representations”, Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math., 15 (2013), 168–187 (Ukrainian) https://www.researchgate.net/publication/292970280
[7] S.O. Serbenyuk, “Defining by Functional Equations Systems of One Class a Functions, whose Arguments Defined by the Cantor Series”, International Mathematical Conference “Differential Equations, Computational Mathematics, Theory of Functions and Mathematical Methods of Mechanics” dedicated to 100th anniversary of G. M. Polozhy: Abstracts, Kyiv, 2014, 121 (Ukrainian) https://www.researchgate.net/publication/301765329
[8] S.O. Serbenyuk, “Functions, that Defined by Functional Equations Systems in Terms of Cantor Series Representation of Numbers”, Naukovi Zapysky NaUKMA, 165 (2015), 34–40 (Ukrainian) https://www.researchgate.net/publication/292606546
[9] A.F. Turbin, M. V. Pratsiovytyi, Fractal Sets, Functions, Probability Distributions, Naukova dumka, Kyiv, 1992 (Russian) | MR
[10] G. Cantor, “Ueber die Einfachen Zahlensysteme”, Z. Math. Phys., 14 (1869), 121–128 (German)
[11] A. Oppenheim, “Criteria for Irrationality of Certain Classes of Numbers”, Amer. Math. Monthly, 61:4 (1954), 235–241 | DOI | MR | Zbl