On robust feedback for systems with multidimensional control
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 1, pp. 35-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with local robust feedback synthesis problem for systems with multidimensional control and unknown bounded perturbations. Using V. I. Korobov's controllability function method, a bounded control which steers an arbitrary initial point to the origin at some finite time is constructed; an estimate from above for the time of motion is given. The range of a segment where the perturbations can vary is found. As an example, the problem of stopping the oscillations of the system of two coupled pendulums is considered.
@article{JMAG_2017_13_1_a1,
     author = {V. I. Korobov and T. V. Revina},
     title = {On robust feedback for systems with multidimensional control},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {35--56},
     year = {2017},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a1/}
}
TY  - JOUR
AU  - V. I. Korobov
AU  - T. V. Revina
TI  - On robust feedback for systems with multidimensional control
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 35
EP  - 56
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a1/
LA  - en
ID  - JMAG_2017_13_1_a1
ER  - 
%0 Journal Article
%A V. I. Korobov
%A T. V. Revina
%T On robust feedback for systems with multidimensional control
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 35-56
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a1/
%G en
%F JMAG_2017_13_1_a1
V. I. Korobov; T. V. Revina. On robust feedback for systems with multidimensional control. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 1, pp. 35-56. http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a1/

[1] V.I. Korobov, Controllability Function Method, R Dynamics, M.–Izhevsk, 2007 (Russian)

[2] Math. USSR Sb., 37:4 (1980), 535–557 | DOI | MR | Zbl | Zbl

[3] C. Desoer et al., “Feedback System Design: The Fractional Representation Approach to Analysis and Synthesis”, IEEE Transactions on Automatic Control, 25:3 (1980), 399–412 | DOI | MR | Zbl

[4] C. Kravaris, C. B. Chung, “Nonlinear State Feedback Synthesis by Global Input/Output Linearization”, AIChE Journal, 33:4 (1987), 592–603 | DOI | MR

[5] L. Weiss, E. F. Infante, “Finite Time Stability under Perturbing Forces and on Product Spaces”, IEEE Transactions on Automatic Control, 12:1 (1967), 54–59 | DOI | MR

[6] E.P. Ryan, “Finite-time Stabilization of Uncertain Nonlinear Planar Systems”, Mechanics and Control, Springer, Berlin–Heidelberg, 1991, 406–441 | DOI | MR

[7] S.P. Bhat, D. S. Bernstein, “Continuous, Bounded, Finite-time Stabilization of the Translational and Rotational Double Integrators”, Proceedings of the 1996 IEEE International Conference on IEEE, 1996 | MR

[8] V.I. Korobov, V. O. Skoryk, “Construction of Restricted Controls for a Nonequilibrium Point in Global Sense”, Vietnam Journal of Mathematics, 43:2 (2015), 459–469 | DOI | MR | Zbl

[9] B.T. Polyak, P. S. Shcherbakov, Robust Stability and Control, Nauka, M., 2002 (Russian)

[10] V.I. Korobov, T. V. Revina, “Robust Feedback Synthesis Problem for Systems with a Single Perturbation”, Commun. in Math. Analysis, 17:2 (2014), 217–230 | MR | Zbl

[11] Ukrainian Mathematical Journal, 68:3 (2016), 380–398 | DOI | MR | MR

[12] M. Cai, Z. Xiang, J. Guo, “Adaptive Finite-time Control for Uncertain Nonlinear Systems with Application to Mechanical Systems”, Nonlinear Dynamics, 2015, 1–16 | MR | Zbl

[13] A. Ovseevich, “A Local Feedback Control Bringing a Linear System to Equilibrium”, J. Optim. Theory Appl., 165 (2015), 532–544 | DOI | MR | Zbl

[14] A. Polyakov, D. Efimov, W. Perruquetti, “Finite-time and Fixed-time Stabilization: Implicit Lyapunov Function Approach”, Automatica, 51 (2015), 332–340 | DOI | MR | Zbl

[15] Y. Su, C. Zheng, “Robust Finite-time Output Feedback Control of Perturbed Double Integrator”, Automatica, 60 (2015), 86–91 | DOI | MR | Zbl

[16] V.I. Korobov, V. O. Skorik, “Synthesis of Restricted Inertial Controls for Systems with Multivariate Control”, J. Math. Anal. and Appl., 275:1 (2002), 84–107 | DOI | MR | Zbl

[17] S. Karlin, Total Positivity, v. 1, Stanford University Press, 1968 | MR | Zbl

[18] M. Fekete, G. Polya, “Über ein Problem von Laguerre”, Rendiconti del Circolo Matematico di Palermo (1884–1940), 34:1 (1912), 89–120 | DOI | Zbl

[19] Transl. of Math. Monographs, 134, Amer. Math. Society, Providence, RI, 1994 | DOI | MR

[20] Mir, M., 1989 | MR | Zbl

[21] V.V. Migulin et al., The Theory of Oscillations, Nauka, M., 1978 (Russian)

[22] P.S. Strelkov, Mechanics, Nauka, M., 1975 (Russian) | MR