@article{JMAG_2017_13_1_a0,
author = {R. Hatamleh and V. A. Zolotarev},
title = {On the abstract inverse scattering problem for trace class perturbations},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {3--34},
year = {2017},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a0/}
}
TY - JOUR AU - R. Hatamleh AU - V. A. Zolotarev TI - On the abstract inverse scattering problem for trace class perturbations JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2017 SP - 3 EP - 34 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a0/ LA - en ID - JMAG_2017_13_1_a0 ER -
R. Hatamleh; V. A. Zolotarev. On the abstract inverse scattering problem for trace class perturbations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 1, pp. 3-34. http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a0/
[1] I. Reed, B. Simon, Methods of modern mathematical physics, v. III, Scattering Theory, Academic Press, Inc., 1979 | MR | Zbl
[2] D.R. Yafaev, Mathematical Scattering Theory: General Theory, Transl. of Math. Monographs, 105, AMS, Providence, RI, 1992 | DOI | MR | Zbl
[3] H. Baumgärtel, M. Wollenberg, Mathematical Scattering Theory, v. II, Math. Textbooks and Monogr., 59, Akademie-Verlag, Berlin, 1983 | MR | Zbl
[4] V.A. Marchenko, Sturm–Liouville Operators and Applications, Revised edition, AMS Chelsea Publishing, 2011 | MR | Zbl
[5] L.D. Faddeev, “The Inverse Problem in the Quantum Theory of Scattering”, J. Math. Phys., 4 (1963), 72–104 | DOI | MR
[6] C. Shadan, P. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, 1989 | MR
[7] B.M. Levitan, Inverse Sturm Liouville Problems, VMU Science Press, Utrecht, 1987 | MR
[8] J.F. Brasche, M.M. Malamud, H. Neidhardt, “Weyl Function and Spectral Properties of Self-Adjoint Extensions”, Integr. Eqs., Oper. Theory, 43:3 (2002), 264–289 | DOI | MR | Zbl
[9] J.F. Brasche, M.M. Malamud, H. Neidhardt, “Scattering Theory for Open Quantum Systems with Finite Rang Coupling”, Math. Phys., Anal., Geom., 10 (2007), 331–358
[10] J.F. Brasche, M.M. Malamud, H. Neidhardt, “Scattering Matrices and Weyl Functions”, Proc. London Math. Soc., 97:3 (2008), 568–598 | DOI | MR
[11] R. Tiedra de Aldecoa, “Time Delay for Dispersive Systems in Quantum Scattering Theory”, Rev. Math. Phys., 21:5 (2009), 675–708 | DOI | MR | Zbl
[12] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver Boyd, 1965 | MR | Zbl
[13] N.I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, v. 2, Advanced Publishing Program, 3rd ed., Pitman, Boston, Mass.–London, 1981 | MR | Zbl
[14] J.B. Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics, Springer, New York, 2006 | MR | Zbl
[15] P. Koosis, Introduction to $H^p$ Spaces, London Mathematical Society Lecture Note Series, 40, Cambridge University Press, Cambridge, 1980 | MR
[16] F.D. Gahov, Boundary Problems, v. I, Fiz.-mat. lit., 1977 (Russian) | MR
[17] I.C. Gohberg, M. G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators in Hilbert Space, Translations of Mathematical Monographs, 18, AMS, 1969 | DOI | MR
[18] M.G. Krein, “On the Trace Formula in Perturbation Theory”, Mat. Sb. (N.S.), 33(75):3 (1953), 597–626 (Russian) | MR | Zbl
[19] M. Anthea Grubb, D. B. Pearson, “Derivation of the Wave and Scattering Operators for Interactions of Rank One”, J. Math. Phys., 11 (1970), 2415–2424 | DOI | MR
[20] J. Kellendonk, S. Richard, “On the Structure of the Wave Operators in One-Dimensional Potential Scattering”, Math. Phys. Electron. J., 14 (2008), 13–21 | MR
[21] S. Richard, R. Tiedra de Aldecoa, “New Formulae for the Wave Operators for a Rank One Interaction”, Integr. Equation, Oper. Theory, 66:2 (2010), 283–292 | DOI | MR | Zbl