On the abstract inverse scattering problem for trace class perturbations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 1, pp. 3-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The scattering problem for a pair of selfadjoint operators $\{L_0, L\}$, where $L - L_0$ is of trace-class, is studied. The explicit form of the scattering matrix and its properties are defined. The equation for the inverse problem is obtained.
@article{JMAG_2017_13_1_a0,
     author = {R. Hatamleh and V. A. Zolotarev},
     title = {On the abstract inverse scattering problem for trace class perturbations},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--34},
     year = {2017},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a0/}
}
TY  - JOUR
AU  - R. Hatamleh
AU  - V. A. Zolotarev
TI  - On the abstract inverse scattering problem for trace class perturbations
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 3
EP  - 34
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a0/
LA  - en
ID  - JMAG_2017_13_1_a0
ER  - 
%0 Journal Article
%A R. Hatamleh
%A V. A. Zolotarev
%T On the abstract inverse scattering problem for trace class perturbations
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 3-34
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a0/
%G en
%F JMAG_2017_13_1_a0
R. Hatamleh; V. A. Zolotarev. On the abstract inverse scattering problem for trace class perturbations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017) no. 1, pp. 3-34. http://geodesic.mathdoc.fr/item/JMAG_2017_13_1_a0/

[1] I. Reed, B. Simon, Methods of modern mathematical physics, v. III, Scattering Theory, Academic Press, Inc., 1979 | MR | Zbl

[2] D.R. Yafaev, Mathematical Scattering Theory: General Theory, Transl. of Math. Monographs, 105, AMS, Providence, RI, 1992 | DOI | MR | Zbl

[3] H. Baumgärtel, M. Wollenberg, Mathematical Scattering Theory, v. II, Math. Textbooks and Monogr., 59, Akademie-Verlag, Berlin, 1983 | MR | Zbl

[4] V.A. Marchenko, Sturm–Liouville Operators and Applications, Revised edition, AMS Chelsea Publishing, 2011 | MR | Zbl

[5] L.D. Faddeev, “The Inverse Problem in the Quantum Theory of Scattering”, J. Math. Phys., 4 (1963), 72–104 | DOI | MR

[6] C. Shadan, P. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, 1989 | MR

[7] B.M. Levitan, Inverse Sturm Liouville Problems, VMU Science Press, Utrecht, 1987 | MR

[8] J.F. Brasche, M.M. Malamud, H. Neidhardt, “Weyl Function and Spectral Properties of Self-Adjoint Extensions”, Integr. Eqs., Oper. Theory, 43:3 (2002), 264–289 | DOI | MR | Zbl

[9] J.F. Brasche, M.M. Malamud, H. Neidhardt, “Scattering Theory for Open Quantum Systems with Finite Rang Coupling”, Math. Phys., Anal., Geom., 10 (2007), 331–358

[10] J.F. Brasche, M.M. Malamud, H. Neidhardt, “Scattering Matrices and Weyl Functions”, Proc. London Math. Soc., 97:3 (2008), 568–598 | DOI | MR

[11] R. Tiedra de Aldecoa, “Time Delay for Dispersive Systems in Quantum Scattering Theory”, Rev. Math. Phys., 21:5 (2009), 675–708 | DOI | MR | Zbl

[12] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver Boyd, 1965 | MR | Zbl

[13] N.I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, v. 2, Advanced Publishing Program, 3rd ed., Pitman, Boston, Mass.–London, 1981 | MR | Zbl

[14] J.B. Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics, Springer, New York, 2006 | MR | Zbl

[15] P. Koosis, Introduction to $H^p$ Spaces, London Mathematical Society Lecture Note Series, 40, Cambridge University Press, Cambridge, 1980 | MR

[16] F.D. Gahov, Boundary Problems, v. I, Fiz.-mat. lit., 1977 (Russian) | MR

[17] I.C. Gohberg, M. G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators in Hilbert Space, Translations of Mathematical Monographs, 18, AMS, 1969 | DOI | MR

[18] M.G. Krein, “On the Trace Formula in Perturbation Theory”, Mat. Sb. (N.S.), 33(75):3 (1953), 597–626 (Russian) | MR | Zbl

[19] M. Anthea Grubb, D. B. Pearson, “Derivation of the Wave and Scattering Operators for Interactions of Rank One”, J. Math. Phys., 11 (1970), 2415–2424 | DOI | MR

[20] J. Kellendonk, S. Richard, “On the Structure of the Wave Operators in One-Dimensional Potential Scattering”, Math. Phys. Electron. J., 14 (2008), 13–21 | MR

[21] S. Richard, R. Tiedra de Aldecoa, “New Formulae for the Wave Operators for a Rank One Interaction”, Integr. Equation, Oper. Theory, 66:2 (2010), 283–292 | DOI | MR | Zbl