@article{JMAG_2016_12_3_a1,
author = {F. Nazarov and M. Sodin},
title = {Asymptotic laws for the spatial distribution and the number of connected components of zero sets of {Gaussian} random functions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {205--278},
year = {2016},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_3_a1/}
}
TY - JOUR AU - F. Nazarov AU - M. Sodin TI - Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2016 SP - 205 EP - 278 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2016_12_3_a1/ LA - en ID - JMAG_2016_12_3_a1 ER -
%0 Journal Article %A F. Nazarov %A M. Sodin %T Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2016 %P 205-278 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2016_12_3_a1/ %G en %F JMAG_2016_12_3_a1
F. Nazarov; M. Sodin. Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 3, pp. 205-278. http://geodesic.mathdoc.fr/item/JMAG_2016_12_3_a1/
[1] M. E. Becker, “Multiparameter Groups of Measure-Preserving Tranformations: a Simple Proof of Wiener's Ergodic Theorem”, Ann. Prob., 9 (1981), 504–509 | DOI | MR | Zbl
[2] D. Beliaev, Z. Kereta, “On Bogomolny-Schmit Conjecture”, J. Phys. A: Math. Theor., 46 (2013), 45503, arXiv: 1310.2747 | DOI | MR
[3] S. Bochner, Vorlesungen Uber Fouriersche Integrale, Leipzig, 1932
[4] V. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, 62, AMS, Providence, RI, 1998 | DOI | MR | Zbl
[5] E. Bogomolny, C. Schmit, “Percolation Model for Nodal Domains of Chaotic Wave Functions”, Phys. Rev. Lett., 88 (2002), 114102, arXiv: ; “Random Wavefunctions and Percolation”, J. Phys. A, 40 (2007), 14033–14043, arXiv: nlin/0110019v10708.4335v1 | DOI | DOI | MR | Zbl
[6] J. Bourgain, “On Toral Eigenfunctions and the Random Wave Model”, Israel J. Math., 201 (2014), 611–630, arXiv: 1303.2881 | DOI | MR | Zbl
[7] J. Bourgain, Z. Rudnick, “Restriction of Toral Eigenfunctions to Hypersurfaces and Nodal Sets”, Geom. Funct. Anal., 22 (2012), 878–937, arXiv: 1105.0018v1 | DOI | MR | Zbl
[8] Y. Canzani, P. Sarnak, On the Topology of the Zero Sets of Monochromatic Random Waves, arXiv: 1412.4437
[9] Y. Fyodorov, A. Lerario, E. Lundberg, “On the Number of Connected Components of Random Algebraic Hypersurfaces”, J. Geom. Phys., 95 (2015), 1–20, arXiv: 1404.5349 | DOI | MR | Zbl
[10] D. Gayet, J.-Y. Welschinger, “Lower Estimates for the Expected Betti Numbers of Random Real Hypersurfaces”, J. London Math. Soc. (2), 90 (2014), 105–120, arXiv: 1303.3035 | DOI | MR | Zbl
[11] D. Gayet, J.-Y. Welschinger, “Expected Topology of Random Real Algebraic Submanifolds”, J. Inst. Math. Jussieu, 2015, arXiv: 1307.5287 | MR
[12] D. Gayet, J.-Y. Welschinger, Universal Components of Random Zero Sets, arXiv: 1503.01582
[13] U. Grenander, “Stochastic Processes and Statistical Inference”, Ark. Mat., 1 (1950), 195–277 | DOI | MR
[14] S. Janson, Gaussian Hilbert Spaces, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[15] M. Hairer, An Introduction to Stochastic PDEs, arXiv: 0907.4178
[16] Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[17] H. Komatsu, “Prof. Yosida's Proof of the Plancherel and the Bochner Theorems for Locally Compact Abelian Groups”, J. Math. Kyoto Univ., 41 (2001), 739–747 | MR | Zbl
[18] K. Konrad, Asymptotic Statistics of Nodal Domains of Quantum Chaotic Billiards in the Semiclassical Limit, Senior Thesis, Dartmouth College, 2012
[19] E. Kostlan, “On the Expected Number of Real Roots of a System of Random Polynomial Equations”, Foundations of Computational Mathematics (Hong Kong, 2000), World Sci. Publ., River Edge, New York, 2002, 149–188 | DOI | MR | Zbl
[20] P. Kurlberg, I. Wigman, “Non-universality of the Nazarov–Sodin Constant”, C. R. Math. Acad. Sci. Paris, 353 (2015), 101–104, arXiv: 1406.7449 | DOI | MR | Zbl
[21] H. J. Landau, L. A. Shepp, “On the Supremum of a Gaussian Process”, Sankhy, Ser. A, 32 (1970), 369–378 | MR | Zbl
[22] A. Lerario, E. Lundberg, “Statistics on Hilbert's Sixteenth Problem”, Int. Math. Res. Notices, 2015, arXiv: 1212.3823 | MR
[23] T. L. Malevich, “Contours That Arise When the Zero Level is Crossed by Gaussian Fields”, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, 16 (1972), 20–23 | MR
[24] M. Nastasescu, The Number of Ovals of a Real Plane Curve, Senior Thesis, Princeton, 2011
[25] F. Nazarov, M. Sodin, “On the Number of Nodal Domains of Random Spherical Harmonics”, Amer. J. Math., 131 (2009), 1337–1357, arXiv: 0706.2409v1 | DOI | MR | Zbl
[26] Y. Rozenshein, The Number of Nodal Components of Arithmetic Random Waves, Master Thesis, Tel Aviv University, 2015, arXiv: 1604.00638
[27] P. Sarnak, Letter to B. Gross and J. Harris on Ovals of Random Plane Curves, , May 2011 http://publications.ias.edu/sarnak/paper/510
[28] P. Sarnak, I. Wigman, Topologies of Nodal Sets of Random Band Limited Functions, arXiv: 1312.7858
[29] M. Sodin, “Lectures on Random Nodal Portraits”, Probability and Statistical Physics in St. Petersburg, Proc. Symp. Pure Math., 91, Amer. Math. Soc., Providencs RI, 2016 http://www.math.tau.ac.il/s̃odin/SPB-Lecture-Notes.pdf
[30] B. Tsirelson, Gaussian Geasures. Lecture Notes, Tel Aviv University, 2010 http://www.tau.ac.il/t̃sirel/Courses/Gauss3/main.html