New method of solvability of a three-dimensional Laplace equation with nonlocal boundary conditions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 3, pp. 185-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solutions of a boundary problem with non-local boundary conditions for a three-dimensional Laplace equation are studied. Here, the boundary conditions are the most common and linear. Further, we note that the singular integrals appearing in the necessary conditions are multi-dimensional. Therefore, the regularization of these singularities is much more difficult than the regularization of one-dimensional singular integrals. After the regularization of singularities the Fredholm property of the problem is proved.
@article{JMAG_2016_12_3_a0,
     author = {Y. Y. Mustafayeva and N. A. Aliyev},
     title = {New method of solvability of a three-dimensional {Laplace} equation with nonlocal boundary conditions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {185--204},
     year = {2016},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_3_a0/}
}
TY  - JOUR
AU  - Y. Y. Mustafayeva
AU  - N. A. Aliyev
TI  - New method of solvability of a three-dimensional Laplace equation with nonlocal boundary conditions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 185
EP  - 204
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_3_a0/
LA  - en
ID  - JMAG_2016_12_3_a0
ER  - 
%0 Journal Article
%A Y. Y. Mustafayeva
%A N. A. Aliyev
%T New method of solvability of a three-dimensional Laplace equation with nonlocal boundary conditions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 185-204
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_3_a0/
%G en
%F JMAG_2016_12_3_a0
Y. Y. Mustafayeva; N. A. Aliyev. New method of solvability of a three-dimensional Laplace equation with nonlocal boundary conditions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 3, pp. 185-204. http://geodesic.mathdoc.fr/item/JMAG_2016_12_3_a0/

[1] N. A. Aliyev, A. A. Mehtiyev, “Investigation of the Solutions of Boundary Value Problem for Cauchy–Riemann Type Equation in Confined Plane Field”, Journal Scientific News of Sumgayit State University, 4 (2002), 30–34

[2] N. A. Aliyev, A. Kh. Abbasova, “A New Approach to the Boundary Problems for Cauchy–Riemann Equation”, Journal News of Baku State University, Phys.-Math. Sci. Series, 2 (2010), 49–56

[3] M. Jahanshahi, N. A. Aliyev, “Determining of an Analytic Function on Its Analytic Domain by Cauchy–Riemann Equation with Special Kind of Boundary Conditions”, Southeast Asian Bulletin of Mathematics, 1 (2004), 33–39 | MR | Zbl

[4] N. A. Aliyev, M. H. Fatehi, M. Jahanshahi, “Analytic Solution for the Cauchy–Riemann Equation with Non-local Boundary Conditions in the First Semi-Quarter”, Quarterly Journal of Science Tarbiat Moallem University, 1 (2010), 29–40

[5] N. A. Aliyev, M. Jahanshahi, “Sufficient Conditions for Reduction of the BVP Including a Mixed PDE with Non-local Boundary Conditions to Fredholm Integral Equations”, International Journal of Mathematical Education in Science and Technology, 3 (1997), 419–425 | DOI | MR

[6] N. A. Aliyev, M. R. Zeynalov, “Steklov Problem for the First order Equation of Elliptic Type”, Journal News of Baku State University, Phys.-Math. Sci. Series, 2 (2012), 12–20

[7] M. Sajjadmanesh, M. Jahanshahi, N. Aliyev, “Inverse Problem of the Kind of Tikhonov–Lavrentiev Including the Cauchy–Riemann Equation on a Boundary Region”, The Fourth Congress of the Turkic World Mathematical Society, Book of Abstracts (Azerbaijan, Baku, 1–3 July, 2011), 266

[8] N. A. Aliyev, Y. Y. Mustafayeva, S. M. Murtuzayeva, “The Influence of the Carleman Condition on the Fredholm Property of the Boundary Value Problem for Cauchy–Riemann Equation”, Proceedings of the Institute of Applied Mathematics, 2 (2012), 153–162

[9] N. A. Aliyev, M. Jahanshahi, “Solution of Poisson's Equation with Global, Local and Nonlocal Boundary Conditions”, International Journal of Mathematical Education in Science and Technology, 2 (2002), 241–247 | DOI | MR

[10] R. V. Huseynov, N. A. Aliyev, S. M. Murtuzayeva, “Influence of Karleman Condition by Investigating Boundary Value Problems for Laplace Equation”, Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 4 (2010), 73–84 | MR

[11] N. A. Aliev, A. Kh. Abbasova, R. M. Zeynalov, “Non-local Boundary Condition Steklov Problem for a Laplace Equation in Bounded Domain”, Science Journal of Applied Mathematics and Statistics, 1 (2013), 1–6

[12] N. A. Aliev, S. M. Hosseini, “An Analysis of a Parabolic Problem with a General (Non-local and Global) Supplementary Linear Conditions. II”, Italian Journal of Pure and Applied Mathematics, 13 (2003), 115–127 | MR | Zbl

[13] N. A. Aliev, S. M. Hosseini, “An Analysis of a Parabolic Problem with a General (Non-local and Global) Supplementary Linear Conditions. I”, Italian Journal of Pure and Applied Mathematics, 12 (2002), 143–153 | MR | Zbl

[14] N. A. Aliev, R. M. Aliguliyev, “Boundary Value Problem for Equations of Hyperbolic Type”, College of science works “Spectral theory of differential operators”, Baku, 1984, 3–9 | Zbl

[15] F. Bahrami, N. A. Aliev, S. M. Hosseini, “A Method for the Reduction of Four Dimensional Mixed Problems with General Boundary Conditions to a System of Second Kind Fredholm Integral Equations”, Italian Journal of Pure and Applied Mathematics, 17 (2005), 91–104 | MR | Zbl

[16] M. R. Fatemi, N. A. Aliyev, “General Linear Boundary Value Problem for the Second-Order Integro-Differential Loaded Equation with Boundary Conditions Containing Both Nonlocal and Global Terms”, Journal Abstract and Applied Analysis, 2010 (2010), Article ID 547526 | MR | Zbl

[17] A. Y. Delshad Gharehgheshlaghi, N. A. Aliyev, “On Fredholm Property of Boundary Value Problems for a Composite Type Model Equation with General Boundary Conditions”, Intern. J. Computer Math., 2011, 124–135

[18] A. Y. Delshad Gharehgheshlaghi, N. A. Aliyev, “General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type”, J. Math. Phys., Anal., Geom., 2 (2012), 119–134 | MR | Zbl

[19] M. Jahanshahi, N. A. Aliev, S. M. Hosseini, “An Analytic Method for Investigation and Solving Two-Dimensional Steady State Navier–Stokes Equations (I)”, Southeast Asian Bulletin of Mathematics, 33:6 (2009), 1075–1089 | MR | Zbl

[20] N. A. Aliev, Sh. Rezapour, M. Jahanshahi, “On a Mixed Problem for Navier–Stokes System in the Unit Cube”, Journal Mathematica Moravica, 1 (2009), 13–24 | MR | Zbl

[21] N. A. Aliev, A. S. Guliev, “A Boundary Value Problem for the Laplace Equation in a Three-dimensional Space”, J. Proc. Azerb. Acad. Sci., Ser. Phys.-Tech. Math. Sci., 5 (1985), 53–56 | MR | Zbl

[22] A. N. Kolmogorov, S. V. Fomin, Introductory Real Analysis, Dover Publications, New York, 1975 | MR

[23] F. G. Trikomi, Integral Equations, Interscience Publishers, New York, 1957 | MR

[24] N. A. Aliyev, S. M. Hosseini, “Multidimensional Singular Fredholm Integral Equations in a Finite Domain and Their Regularization”, Southeast Asian Bulletin of Mathematics, 3 (2003), 395–408 | MR

[25] V. S. Vladimirov, Equations of Mathematical Physics, Mir, M., 1981