Solutions of nonlinear Schrödinger equation with two potential wells in linear/nonlinear media
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 2, pp. 168-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of nonlinear Schrödinger equation, we analytically studied the nonlinear localized states in the system with two potential holes in the cases of linear and nonlinear media in the holes as well as their linear and nonlinear environment. All the possible solutions for the system are found and studied. The frequency dependences of the field amplitudes for all types of possible stationary localized states are obtained.
@article{JMAG_2016_12_2_a3,
     author = {V. S. Gerasimchuk and I. V. Gerasimchuk and N. I. Dranik},
     title = {Solutions of nonlinear {Schr\"odinger} equation with two potential wells in linear/nonlinear media},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {168--176},
     year = {2016},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a3/}
}
TY  - JOUR
AU  - V. S. Gerasimchuk
AU  - I. V. Gerasimchuk
AU  - N. I. Dranik
TI  - Solutions of nonlinear Schrödinger equation with two potential wells in linear/nonlinear media
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 168
EP  - 176
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a3/
LA  - en
ID  - JMAG_2016_12_2_a3
ER  - 
%0 Journal Article
%A V. S. Gerasimchuk
%A I. V. Gerasimchuk
%A N. I. Dranik
%T Solutions of nonlinear Schrödinger equation with two potential wells in linear/nonlinear media
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 168-176
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a3/
%G en
%F JMAG_2016_12_2_a3
V. S. Gerasimchuk; I. V. Gerasimchuk; N. I. Dranik. Solutions of nonlinear Schrödinger equation with two potential wells in linear/nonlinear media. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 2, pp. 168-176. http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a3/

[1] Y. Kivshar, G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic, New York, 2003

[2] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays”, Phys. Rev. Lett., 81 (1998), 3383–3386 | DOI

[3] I. V. Gerasimchuk, A. S. Kovalev, “Spatial Localization of Nonlinear Waves in Layered and Modulated Media”, JETP Lett., 85 (2007), 488–492 | DOI

[4] Y. Silberberg, G. I. Stegeman, “Nonlinear Coupling of Waveguide Modes”, Appl. Phys. Lett., 50 (1987), 801–803 | DOI

[5] D. R. Heatley, E. M. Wright, G. I. Stegeman, “Soliton Coupler”, Appl. Phys. Lett., 53 (1988), 172–174 | DOI

[6] P. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca–London, 1979

[7] M. Doi, S. Edwards, The Theory of Polymer Dynamics, Clarendon, Oxford, 1986

[8] I. V. Gerasimchuk, Jens-Uwe Sommer, “Mean-Field Treatment of Polymer Chains Trapped between Surfaces and Penetrable Interfaces”, Phys. Rev. E, 76 (2007), 041803, 11 pp. | DOI

[9] L. Pitaevskii, S. Stringari, Bose–Einstein Condensation, Oxford–New York, 2003 | MR

[10] A. M. Kosevich, A. S. Kovalev, Introduction to Nonlinear Physical Mechanics, Naukova Dumka, Kiev, 1989 (in Russian) | MR | Zbl

[11] Yu. S. Sikorsky, Elements of the Theory of Elliptic Functions and Application to Mechanics, KomKniga, M., 2014 (in Russian)