@article{JMAG_2016_12_2_a1,
author = {M. O. Bebiya and V. I. Korobov},
title = {On stabilization problem for nonlinear systems with power principal part},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {113--133},
year = {2016},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a1/}
}
TY - JOUR AU - M. O. Bebiya AU - V. I. Korobov TI - On stabilization problem for nonlinear systems with power principal part JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2016 SP - 113 EP - 133 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a1/ LA - en ID - JMAG_2016_12_2_a1 ER -
M. O. Bebiya; V. I. Korobov. On stabilization problem for nonlinear systems with power principal part. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 2, pp. 113-133. http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a1/
[1] N. N. Krasovskii, “Stabilization Problems for Controllable Motions”: I. G. Malkin, Theory of Stability of Movement, Nauka, M., 1966, 475–514
[2] B. T. Polyak, P. S. Scherbakov, Robust Stability and Control, Nauka, M., 2002
[3] V. I. Korobov, The Controllability Function Method, R Dynamics, M.–Izhevsk, 2007 (in Russian)
[4] N. K. Khalil, Nonlinear Systems, Prentice Hall, New York, 2002 | Zbl
[5] M. Kawski, “Stabilization of Nonlinear Systems in the Plane”, SCL, 1989, no. 12, 169–175 | MR | Zbl
[6] V. I. Korobov, M. O. Bebiya, “Stabilization of Some Class of Nonlinear Systems that are Uncontrollable in the First Approximation”, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 2014, no. 2, 20–25 (in Russian) | Zbl
[7] M. O. Bebiya, “Stabilization of Systems with Power Nonlinearity”, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 69:1120 (2014), 75–84 (in Russian) | Zbl
[8] V. I. Korobov, A. V. Lutsenko, “Robust Stabilization of one Class of Nonlinear Systems”, Autom. Remote Control, 75:8 (2014), 1433–1444 | DOI | MR | Zbl
[9] W. Lin, C. Quan, “Adding One Power Integrator: A Tool for Global Stabilization of High-Order Lower-Triangular Systems”, Systems Control Lett., 39:5 (2000), 339–351 | DOI | MR | Zbl
[10] W. Lin, C. Quan, “Adaptive Regulation of High-Order Lower-Triangular Systems: an Adding a Power Integrator Technique”, Systems Control Lett., 39:5 (2000), 353–364 | DOI | MR | Zbl
[11] Z. Sun, Y. Liu, “State-Feedback Adaptive Stabilizing Control Design for a Class of High-Order Nonlinear Systems with Unknown Control Coefficients”, Jrl. Syst. Sci. Complexity, 20:3 (2007), 350–361 | DOI | MR | Zbl
[12] G. Zhao, N. Duan, “A Continuous State Feedback Controller Design for High-Order Nonlinear Systems with Polynomial Growth Nonlinearities”, IJAC, 10:4 (2013), 267–274
[13] V. I. Korobov, “Controllability and Stability of Certain Nonlinear Systems”, Differentsial'nye Uravneniya, 4:4 (1973), 614–619 (in Russian) | MR
[14] G. M. Sklyar, K. V. Sklyar, S. Yu. Ignatovich, “On the Extension of the Korobov's Class of Linearizable Triangular Systems by Nonlinear Control Systems of the Class $C^1$”, Systems Control Lett., 54:11 (2005), 1097–1108 | DOI | MR | Zbl