On stabilization problem for nonlinear systems with power principal part
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 2, pp. 113-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, the stabilization problem for the uncontrollable with respect to the first approximation nonlinear system with power principal part is solved. A class of stabilizing controls for the nonlinear approximation of this system is constructed by using the Lyapunov function method. It is proved that the same controls solve the stabilization problem for the original nonlinear system. An ellipsoidal approximation of the domain of attraction to the origin is given.
@article{JMAG_2016_12_2_a1,
     author = {M. O. Bebiya and V. I. Korobov},
     title = {On stabilization problem for nonlinear systems with power principal part},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {113--133},
     year = {2016},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a1/}
}
TY  - JOUR
AU  - M. O. Bebiya
AU  - V. I. Korobov
TI  - On stabilization problem for nonlinear systems with power principal part
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 113
EP  - 133
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a1/
LA  - en
ID  - JMAG_2016_12_2_a1
ER  - 
%0 Journal Article
%A M. O. Bebiya
%A V. I. Korobov
%T On stabilization problem for nonlinear systems with power principal part
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 113-133
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a1/
%G en
%F JMAG_2016_12_2_a1
M. O. Bebiya; V. I. Korobov. On stabilization problem for nonlinear systems with power principal part. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 2, pp. 113-133. http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a1/

[1] N. N. Krasovskii, “Stabilization Problems for Controllable Motions”: I. G. Malkin, Theory of Stability of Movement, Nauka, M., 1966, 475–514

[2] B. T. Polyak, P. S. Scherbakov, Robust Stability and Control, Nauka, M., 2002

[3] V. I. Korobov, The Controllability Function Method, R Dynamics, M.–Izhevsk, 2007 (in Russian)

[4] N. K. Khalil, Nonlinear Systems, Prentice Hall, New York, 2002 | Zbl

[5] M. Kawski, “Stabilization of Nonlinear Systems in the Plane”, SCL, 1989, no. 12, 169–175 | MR | Zbl

[6] V. I. Korobov, M. O. Bebiya, “Stabilization of Some Class of Nonlinear Systems that are Uncontrollable in the First Approximation”, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 2014, no. 2, 20–25 (in Russian) | Zbl

[7] M. O. Bebiya, “Stabilization of Systems with Power Nonlinearity”, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 69:1120 (2014), 75–84 (in Russian) | Zbl

[8] V. I. Korobov, A. V. Lutsenko, “Robust Stabilization of one Class of Nonlinear Systems”, Autom. Remote Control, 75:8 (2014), 1433–1444 | DOI | MR | Zbl

[9] W. Lin, C. Quan, “Adding One Power Integrator: A Tool for Global Stabilization of High-Order Lower-Triangular Systems”, Systems Control Lett., 39:5 (2000), 339–351 | DOI | MR | Zbl

[10] W. Lin, C. Quan, “Adaptive Regulation of High-Order Lower-Triangular Systems: an Adding a Power Integrator Technique”, Systems Control Lett., 39:5 (2000), 353–364 | DOI | MR | Zbl

[11] Z. Sun, Y. Liu, “State-Feedback Adaptive Stabilizing Control Design for a Class of High-Order Nonlinear Systems with Unknown Control Coefficients”, Jrl. Syst. Sci. Complexity, 20:3 (2007), 350–361 | DOI | MR | Zbl

[12] G. Zhao, N. Duan, “A Continuous State Feedback Controller Design for High-Order Nonlinear Systems with Polynomial Growth Nonlinearities”, IJAC, 10:4 (2013), 267–274

[13] V. I. Korobov, “Controllability and Stability of Certain Nonlinear Systems”, Differentsial'nye Uravneniya, 4:4 (1973), 614–619 (in Russian) | MR

[14] G. M. Sklyar, K. V. Sklyar, S. Yu. Ignatovich, “On the Extension of the Korobov's Class of Linearizable Triangular Systems by Nonlinear Control Systems of the Class $C^1$”, Systems Control Lett., 54:11 (2005), 1097–1108 | DOI | MR | Zbl