@article{JMAG_2016_12_2_a0,
author = {F. A. Aliev and N. A. Aliev and A. P. Guliev},
title = {Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {101--112},
year = {2016},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a0/}
}
TY - JOUR AU - F. A. Aliev AU - N. A. Aliev AU - A. P. Guliev TI - Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2016 SP - 101 EP - 112 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a0/ LA - en ID - JMAG_2016_12_2_a0 ER -
%0 Journal Article %A F. A. Aliev %A N. A. Aliev %A A. P. Guliev %T Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2016 %P 101-112 %V 12 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a0/ %G en %F JMAG_2016_12_2_a0
F. A. Aliev; N. A. Aliev; A. P. Guliev. Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 2, pp. 101-112. http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a0/
[1] V. I. Shurov, Technology and Techniques of Oil Recovery, Nedra, M., 1983
[2] E. Camponogara, A. Plucenio, A. F. Teixeira, S. R. V. Campos, “An Automation System for Gas-Lifted Oil Wells: Model Identification Control and Optimization”, J. Petroleum Sci. and Engineering, 70 (2010), 157–167 | DOI
[3] F. A. Aliev, N. A. Ismailov, N. S. Mukhtarova, “Algorithm to Determine the Optimal Solution of a Boundary Control Problem”, Automation and Remote Control, 76:4 (2015), 627–633 | DOI | MR | Zbl
[4] F. A. Aliev, M. Kh. Ilyasov, M. A. Dzamalbekov, “Modeling of Work of Gas-Lift Wells”, Rep. of NAS of Azerbaijan, 4 (2008), 30–41
[5] F. A. Aliev, M. Kh. Ilyasov, N. B. Nuriev, “The Problems of Modeling and Optimal Stabilization of Gas Lift Process”, Appl. Mechanics, 2010, no. 6, 115–122
[6] F. A. Aliev, M. M. Mutallimov, I. M. Askerov, I. S. Raguimov, “Asymptotic Method of Solution for a Problem of Construction of Optimal Gas-lift Process Modes”, Mathematical Problems in Engineering, 2010, 191053, 10 pp. | MR | Zbl
[7] F. A. Aliev, N. A. Aliev, K. G. Hasanov, A. K. Turarov, A. P. Guliev, G. V. Isaeva, “Numerical-Analytical Method for Solving of the First Order Partial Quasi-Linear Equations”, TWMS J. — Pure Appl. Math., 6:2 (2015), 158–164
[8] M. Ashraf, S. Asghar, M. A. Hossain, “The Computational Study of the Effects of Magnetic Field and Free Stream Velocity Oscillation on Boundary Layer Flow Past a Magnetized Vertical Plate”, Appl. Comput. Math., 13:2 (2014), 175–193 | MR | Zbl
[9] A. Kh. Mizadjanzadeh, I. M. Ametov, A. M. Khasaev, V. I. Gusev, Technology and Technique of Oil Extractions, Nedra, M., 1986
[10] F. A. Aliev, M. M. Mutallimov, N. A. Ismailov, M. F. Racabov, “An Algorithm for Constructing Optimal Controllers for Gaslift Operation”, Automation and Remote Control, 73:8 (2012), 1279–1289 | DOI | MR | Zbl
[11] F. A. Aliev, M. A. Djamalbekov, M. Kh. Ilyasov, “Mathematical Simulation and Control of Gas-Lift”, J. Computer and Systems Sciences International, 50:1 (2011), 805–814 | DOI | MR | Zbl
[12] F. A. Aliev, N. A. Ismailov, “Problems of Optimization with the Periodic Boundary Condition and Boundary Control in Gas Lift Wells”, Nonlinear Vibrations, 2014, no. 2, 216–227
[13] A. P. Guliev, M. Kh. Ilyasov, N. A. Aliev, F. A. Aliev, “The Algorithm for Solving the Problem of Determining the Motion of Space Process”, Proc. IAM, 2:1 (2013), 91–97
[14] A. O. Gelfand, Calculation of Finite Differences, Nauka, M., 1967
[15] N. A. Aliev, F. A. Aliev, A. P. Guliev, M. Kh. Ilyasov, “Method of Series in the Solution of One Boundary Problem for the System of Hyperbolic Type Equations, Arising in the Oil Production”, Proc. IAM, 2:2 (2013), 113–136
[16] S. Alkan, A. Secer, “Solution of Nonlinear Fractional Boundary Value Problems with Nonhomogeneous Boundary Conditions”, Appl. Comput. Math., 14:3 (2015), 284–295 | MR | Zbl
[17] J. Rashidinia, M. Khazaei, H. Nikmarvani, “Spline Collocation Method for Solution of Higher Order Linear Boundary Value Problems”, TWMS J. — Pure Appl. Math., 6:1 (2015), 38–47 | MR | Zbl
[18] L. K. Vashisht, “Brief Paper. Banach Frames Generated by Compact Operators Associated with a Boundary Value Problem”, TWMS J. — Pure Appl. Math., 6:2 (2015), 254–258 | MR
[19] F. A. Aliev, N. A. Ismailov, “Inverse Problem to Determine the Hydraulic Resistance Coefficient in the Gas Lift Process”, Appl. Comput. Math., 12:3 (2013), 306–313 | MR | Zbl
[20] F. A. Aliev, N. A. Ismailov, A. A. Namazov, “Asymptotic Method for Finding the Coefficient of Hydraulic Resistance in Lifting of Fluid on Tubing”, Inverse and Ill Posed Problems, 23:5 (2015), 511–518 | MR | Zbl
[21] G. D. Birkhoff, “On the Asymptotic Character of the Solutions of Certain Linear Differential Equations Containing a Parameter”, Trans. Am. Math. Soc., 9 (1908), 219–231 | DOI | MR
[22] A. Erdeyi, Asymptotic Decompositions, M., 1962
[23] S. Tiwari, M. Kumar, “An Initial Value Technique to Solve Two-Point Non-Linear Singularly Perturbed Boundary Value Problems”, Appl. Comput. Math., 14:2 (2015), 150–157 | MR | Zbl
[24] H. Vazquez-Leal, “The Enhanced Power Series Method to Find Exact or Approximate Solutions of Nonlinear Differential Equations”, Appl. Comput. Math., 14:2 (2015), 168–179 | MR | Zbl
[25] M. A. Lavrentyev, V. V. Shabat, Methods of Theory of Functions of Complex Variables, Nauka, M., 1973
[26] Z. O. Melnik, “Solution of a Mixed Problem for Hyperbolic Equations with Discontinuous Coefficients”, Differ. Eqs., 2:4 (1966), 560–570 | MR | Zbl
[27] M. Mohammadi, R. Mokhtari, H. Panahipour, “Solving Two Parabolic Inverse Problems with a Nonlocal Boundary Condition in the Reproducing Kernel Space”, Appl. Comput. Math., 13:1 (2014), 91–106 | MR