Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 2, pp. 101-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the boundary value problem, where the motion of the object is described by the two-dimensional linear system of partial differential equations of hyperbolic type where a discontinuity is at a point within the interval that defines the phase coordinate $x$. Using the method of series and Laplace transformation in time $t$ (time-frequency method), an analytical solution is found for the determination of debit $Q(2l,t)$ and pressure $P(2l,t)$, which can be effective in the calculation of the coefficient of hydraulic resistance in the lift at oil extraction by gas lift method where $l$ is the well depth. For the case where the boundary functions are of exponential form, the formulas for $P(2l,t)$ and $Q(2l,t)$ depending only on $t$ are obtained. It is shown that at constant boundary functions, these formulas allow us to determine the coefficient of hydraulic resistance in the lift of gas lift wells, which determines the change in the dynamics of pollution.
@article{JMAG_2016_12_2_a0,
     author = {F. A. Aliev and N. A. Aliev and A. P. Guliev},
     title = {Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {101--112},
     year = {2016},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a0/}
}
TY  - JOUR
AU  - F. A. Aliev
AU  - N. A. Aliev
AU  - A. P. Guliev
TI  - Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 101
EP  - 112
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a0/
LA  - en
ID  - JMAG_2016_12_2_a0
ER  - 
%0 Journal Article
%A F. A. Aliev
%A N. A. Aliev
%A A. P. Guliev
%T Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 101-112
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a0/
%G en
%F JMAG_2016_12_2_a0
F. A. Aliev; N. A. Aliev; A. P. Guliev. Time frequency method of solving one boundary value problem for a hyperbolic system and its application to the oil extraction. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 2, pp. 101-112. http://geodesic.mathdoc.fr/item/JMAG_2016_12_2_a0/

[1] V. I. Shurov, Technology and Techniques of Oil Recovery, Nedra, M., 1983

[2] E. Camponogara, A. Plucenio, A. F. Teixeira, S. R. V. Campos, “An Automation System for Gas-Lifted Oil Wells: Model Identification Control and Optimization”, J. Petroleum Sci. and Engineering, 70 (2010), 157–167 | DOI

[3] F. A. Aliev, N. A. Ismailov, N. S. Mukhtarova, “Algorithm to Determine the Optimal Solution of a Boundary Control Problem”, Automation and Remote Control, 76:4 (2015), 627–633 | DOI | MR | Zbl

[4] F. A. Aliev, M. Kh. Ilyasov, M. A. Dzamalbekov, “Modeling of Work of Gas-Lift Wells”, Rep. of NAS of Azerbaijan, 4 (2008), 30–41

[5] F. A. Aliev, M. Kh. Ilyasov, N. B. Nuriev, “The Problems of Modeling and Optimal Stabilization of Gas Lift Process”, Appl. Mechanics, 2010, no. 6, 115–122

[6] F. A. Aliev, M. M. Mutallimov, I. M. Askerov, I. S. Raguimov, “Asymptotic Method of Solution for a Problem of Construction of Optimal Gas-lift Process Modes”, Mathematical Problems in Engineering, 2010, 191053, 10 pp. | MR | Zbl

[7] F. A. Aliev, N. A. Aliev, K. G. Hasanov, A. K. Turarov, A. P. Guliev, G. V. Isaeva, “Numerical-Analytical Method for Solving of the First Order Partial Quasi-Linear Equations”, TWMS J. — Pure Appl. Math., 6:2 (2015), 158–164

[8] M. Ashraf, S. Asghar, M. A. Hossain, “The Computational Study of the Effects of Magnetic Field and Free Stream Velocity Oscillation on Boundary Layer Flow Past a Magnetized Vertical Plate”, Appl. Comput. Math., 13:2 (2014), 175–193 | MR | Zbl

[9] A. Kh. Mizadjanzadeh, I. M. Ametov, A. M. Khasaev, V. I. Gusev, Technology and Technique of Oil Extractions, Nedra, M., 1986

[10] F. A. Aliev, M. M. Mutallimov, N. A. Ismailov, M. F. Racabov, “An Algorithm for Constructing Optimal Controllers for Gaslift Operation”, Automation and Remote Control, 73:8 (2012), 1279–1289 | DOI | MR | Zbl

[11] F. A. Aliev, M. A. Djamalbekov, M. Kh. Ilyasov, “Mathematical Simulation and Control of Gas-Lift”, J. Computer and Systems Sciences International, 50:1 (2011), 805–814 | DOI | MR | Zbl

[12] F. A. Aliev, N. A. Ismailov, “Problems of Optimization with the Periodic Boundary Condition and Boundary Control in Gas Lift Wells”, Nonlinear Vibrations, 2014, no. 2, 216–227

[13] A. P. Guliev, M. Kh. Ilyasov, N. A. Aliev, F. A. Aliev, “The Algorithm for Solving the Problem of Determining the Motion of Space Process”, Proc. IAM, 2:1 (2013), 91–97

[14] A. O. Gelfand, Calculation of Finite Differences, Nauka, M., 1967

[15] N. A. Aliev, F. A. Aliev, A. P. Guliev, M. Kh. Ilyasov, “Method of Series in the Solution of One Boundary Problem for the System of Hyperbolic Type Equations, Arising in the Oil Production”, Proc. IAM, 2:2 (2013), 113–136

[16] S. Alkan, A. Secer, “Solution of Nonlinear Fractional Boundary Value Problems with Nonhomogeneous Boundary Conditions”, Appl. Comput. Math., 14:3 (2015), 284–295 | MR | Zbl

[17] J. Rashidinia, M. Khazaei, H. Nikmarvani, “Spline Collocation Method for Solution of Higher Order Linear Boundary Value Problems”, TWMS J. — Pure Appl. Math., 6:1 (2015), 38–47 | MR | Zbl

[18] L. K. Vashisht, “Brief Paper. Banach Frames Generated by Compact Operators Associated with a Boundary Value Problem”, TWMS J. — Pure Appl. Math., 6:2 (2015), 254–258 | MR

[19] F. A. Aliev, N. A. Ismailov, “Inverse Problem to Determine the Hydraulic Resistance Coefficient in the Gas Lift Process”, Appl. Comput. Math., 12:3 (2013), 306–313 | MR | Zbl

[20] F. A. Aliev, N. A. Ismailov, A. A. Namazov, “Asymptotic Method for Finding the Coefficient of Hydraulic Resistance in Lifting of Fluid on Tubing”, Inverse and Ill Posed Problems, 23:5 (2015), 511–518 | MR | Zbl

[21] G. D. Birkhoff, “On the Asymptotic Character of the Solutions of Certain Linear Differential Equations Containing a Parameter”, Trans. Am. Math. Soc., 9 (1908), 219–231 | DOI | MR

[22] A. Erdeyi, Asymptotic Decompositions, M., 1962

[23] S. Tiwari, M. Kumar, “An Initial Value Technique to Solve Two-Point Non-Linear Singularly Perturbed Boundary Value Problems”, Appl. Comput. Math., 14:2 (2015), 150–157 | MR | Zbl

[24] H. Vazquez-Leal, “The Enhanced Power Series Method to Find Exact or Approximate Solutions of Nonlinear Differential Equations”, Appl. Comput. Math., 14:2 (2015), 168–179 | MR | Zbl

[25] M. A. Lavrentyev, V. V. Shabat, Methods of Theory of Functions of Complex Variables, Nauka, M., 1973

[26] Z. O. Melnik, “Solution of a Mixed Problem for Hyperbolic Equations with Discontinuous Coefficients”, Differ. Eqs., 2:4 (1966), 560–570 | MR | Zbl

[27] M. Mohammadi, R. Mokhtari, H. Panahipour, “Solving Two Parabolic Inverse Problems with a Nonlocal Boundary Condition in the Reproducing Kernel Space”, Appl. Comput. Math., 13:1 (2014), 91–106 | MR