Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 1, pp. 78-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study an eigenvalue distribution of the adjacency matrix $A^{(N,p, \alpha)}$ of the weighted random bipartite graphs $\Gamma= \Gamma_{N,p,\alpha}$. We assume that the graphs have $N$ vertices, the ratio of parts is $\frac{\alpha}{1-\alpha}$, and the average number of edges attached to one vertex is $\alpha p$ for the first part and $(1-\alpha) p$ for the second part of vertices. To each edge of the graph $e_{ij}$, we assign the weight given by a random variable $a_{ij}$ with the finite second moment. We consider the resolvents $G^{(N,p, \alpha)}(z)$ of $A^{(N,p, \alpha)}$ and study the functions \begin{gather*}f_{1,N}(u,z)=\frac{1}{[\alpha N]}\sum_{k=1}^{[\alpha N]}e^{-ua_k^2G_{kk}^{(N,p,\alpha)}(z)} \end{gather*} and \begin{gather*}f_{2,N}(u,z)=\frac{1}{N-[\alpha N]}\sum_{k=[\alpha N]+1}^Ne^{-ua_k^2G_{kk}^{(N,p,\alpha)}(z)}\end{gather*} in the limit $N\to \infty$. We derive a closed system of equations that uniquely determine the limiting functions $f_{1}(u,z)$ and $f_{2}(u,z)$. This system of equations allows us to prove the existence of the limiting measure $\sigma_{p, \alpha}$. The weak convergence in probability of the normalized eigenvalue counting measures is proved.
@article{JMAG_2016_12_1_a3,
     author = {V. Vengerovsky},
     title = {Eigenvalue distribution of bipartite large weighted random graphs. {Resolvent} approach},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {78--93},
     year = {2016},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a3/}
}
TY  - JOUR
AU  - V. Vengerovsky
TI  - Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 78
EP  - 93
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a3/
LA  - en
ID  - JMAG_2016_12_1_a3
ER  - 
%0 Journal Article
%A V. Vengerovsky
%T Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 78-93
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a3/
%G en
%F JMAG_2016_12_1_a3
V. Vengerovsky. Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 1, pp. 78-93. http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a3/

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972

[2] M. Bauer, O. Golinelli, Random Incidence Matrices: Spectral Density at Zero Energy, Saclay preprint T00/087

[3] M. Bauer, O. Golinelli, “Random Incidence Matrices: Moments and Spectral Density”, J. Stat. Phys., 103 (2001), 301–336 | DOI | MR

[4] F. Benaych-Georges, A. Guionnet, C. Male, “Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices”, Comm. Math. Phys., 329:2 (2014), 641–686 | DOI | MR | Zbl

[5] B. Bollobas, Random Graphs, Acad. Press, New York, 1985 | MR | Zbl

[6] Y. V. Fyodorov, A. D. Mirlin, “Strong Eigenfunction Correlations near the Anderson Localization Transition”, Phys. Rev. B, 55 (1997), R16001–R16004 | DOI

[7] S. Janson, T. Łuczak, A. Rucinski, Random Graphs, John Wiley Sons, Inc., New York, 2000 | MR

[8] O. Khorunzhy, M. Shcherbina, V. Vengerovsky, “Eigenvalue Distribution of Large Weighted Random Graphs”, J. Math. Phys., 45:4 (2004), 1648–1672 | DOI | MR | Zbl

[9] O. Khorunzhy, B. Khoruzhenko, L. Pastur, M. Shcherbina, “The Large-n Limit in Statistical Mechanics and Spectral Theory of Disordered System”, Phase Transition and Critical Phenomena, 15, Academic Press, 1992, 73

[10] M. L. Mehta, Random Matrices, Acad. Press, New York, 1991 | MR | Zbl

[11] A. D. Mirlin, Y. V. Fyodorov, “Universality of the Level Correlation Function of Sparce Random Matrices”, J. Phys. A: Math. Jen., 24 (1991), 2273–2286 | DOI | MR | Zbl

[12] G. J. Rodgers, A. J. Bray, “Density of States of a Sparse Random Matrix”, Phys. Rev. B, 37 (1988), 3557–3562 | DOI | MR

[13] G. J. Rodgers, C. De Dominicis, “Density of States of Sparse Random Matrices”, J. Phys. A: Math. Jen., 23 (1990), 1567–1566 | DOI | MR

[14] M. Shcherbina, B. Tirozzi, “Central Limit Theorem for Fluctuations of Linear Eigenvalue Statistics of Large Random Graphs”, J. Math. Phys., 51:2 (2010), 023523 | DOI | MR | Zbl

[15] M. Shcherbina, B. Tirozzi, “Central Limit Theorem for Fluctuations of Linear Eigenvalue Statistics of Large Random Graphs: Diluted Regime”, J. Math. Phys., 53:4 (2012), 043501 | DOI | MR | Zbl

[16] V. Vengerovsky, “Eigenvalue Distribution of a Large Weighted Bipartite Random Graph”, J. Math. Phys., Anal., Geom., 10:2 (2014), 240–255 | MR | Zbl

[17] E. P. Wigner, “On the Distribution of the Roots of Certain Symmetric Matrices”, Ann. Math., 67 (1958), 325–327 | DOI | MR | Zbl