@article{JMAG_2016_12_1_a3,
author = {V. Vengerovsky},
title = {Eigenvalue distribution of bipartite large weighted random graphs. {Resolvent} approach},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {78--93},
year = {2016},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a3/}
}
TY - JOUR AU - V. Vengerovsky TI - Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2016 SP - 78 EP - 93 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a3/ LA - en ID - JMAG_2016_12_1_a3 ER -
V. Vengerovsky. Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 1, pp. 78-93. http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a3/
[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972
[2] M. Bauer, O. Golinelli, Random Incidence Matrices: Spectral Density at Zero Energy, Saclay preprint T00/087
[3] M. Bauer, O. Golinelli, “Random Incidence Matrices: Moments and Spectral Density”, J. Stat. Phys., 103 (2001), 301–336 | DOI | MR
[4] F. Benaych-Georges, A. Guionnet, C. Male, “Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices”, Comm. Math. Phys., 329:2 (2014), 641–686 | DOI | MR | Zbl
[5] B. Bollobas, Random Graphs, Acad. Press, New York, 1985 | MR | Zbl
[6] Y. V. Fyodorov, A. D. Mirlin, “Strong Eigenfunction Correlations near the Anderson Localization Transition”, Phys. Rev. B, 55 (1997), R16001–R16004 | DOI
[7] S. Janson, T. Łuczak, A. Rucinski, Random Graphs, John Wiley Sons, Inc., New York, 2000 | MR
[8] O. Khorunzhy, M. Shcherbina, V. Vengerovsky, “Eigenvalue Distribution of Large Weighted Random Graphs”, J. Math. Phys., 45:4 (2004), 1648–1672 | DOI | MR | Zbl
[9] O. Khorunzhy, B. Khoruzhenko, L. Pastur, M. Shcherbina, “The Large-n Limit in Statistical Mechanics and Spectral Theory of Disordered System”, Phase Transition and Critical Phenomena, 15, Academic Press, 1992, 73
[10] M. L. Mehta, Random Matrices, Acad. Press, New York, 1991 | MR | Zbl
[11] A. D. Mirlin, Y. V. Fyodorov, “Universality of the Level Correlation Function of Sparce Random Matrices”, J. Phys. A: Math. Jen., 24 (1991), 2273–2286 | DOI | MR | Zbl
[12] G. J. Rodgers, A. J. Bray, “Density of States of a Sparse Random Matrix”, Phys. Rev. B, 37 (1988), 3557–3562 | DOI | MR
[13] G. J. Rodgers, C. De Dominicis, “Density of States of Sparse Random Matrices”, J. Phys. A: Math. Jen., 23 (1990), 1567–1566 | DOI | MR
[14] M. Shcherbina, B. Tirozzi, “Central Limit Theorem for Fluctuations of Linear Eigenvalue Statistics of Large Random Graphs”, J. Math. Phys., 51:2 (2010), 023523 | DOI | MR | Zbl
[15] M. Shcherbina, B. Tirozzi, “Central Limit Theorem for Fluctuations of Linear Eigenvalue Statistics of Large Random Graphs: Diluted Regime”, J. Math. Phys., 53:4 (2012), 043501 | DOI | MR | Zbl
[16] V. Vengerovsky, “Eigenvalue Distribution of a Large Weighted Bipartite Random Graph”, J. Math. Phys., Anal., Geom., 10:2 (2014), 240–255 | MR | Zbl
[17] E. P. Wigner, “On the Distribution of the Roots of Certain Symmetric Matrices”, Ann. Math., 67 (1958), 325–327 | DOI | MR | Zbl