Transformation operators and modified Sobolev spaces in controllability problems on a half-axis
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 1, pp. 17-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the control system $ w_{tt}=\frac1\rho(k w_x){}_x+\gamma w$, $w_x(0,t)=u(t)$, $x>0$, $t\in(0,T)$, is considered in special modified spaces of Sobolev type. Here $\rho$, $k$, and $\gamma$ are given functions on $[0,+\infty)$; $u\in L^\infty(0,\infty)$ is a control; $T>0$ is a constant. The growth of distributions from these spaces depends on the growth of $\rho$ and $k$. With the aid of some transformation operators, it is proved that the control system replicates the controllability properties of the auxiliary system $ z_{tt}=z_{\xi\xi}-q^2z$, $z_\xi(0,t)=v(t)$, $\xi>0$, $t\in(0,T)$, and vise versa. Here $q\ge0$ is a constant and $v\in L^\infty(0,\infty)$ is a control. For the main system, necessary and sufficient conditions of the $L^\infty$-controllability and the approximate $L^\infty$-controllability are obtained from those known for the auxiliary system.
@article{JMAG_2016_12_1_a1,
     author = {L. V. Fardigola},
     title = {Transformation operators and modified {Sobolev} spaces in~controllability problems on a half-axis},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {17--47},
     year = {2016},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a1/}
}
TY  - JOUR
AU  - L. V. Fardigola
TI  - Transformation operators and modified Sobolev spaces in controllability problems on a half-axis
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 17
EP  - 47
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a1/
LA  - en
ID  - JMAG_2016_12_1_a1
ER  - 
%0 Journal Article
%A L. V. Fardigola
%T Transformation operators and modified Sobolev spaces in controllability problems on a half-axis
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 17-47
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a1/
%G en
%F JMAG_2016_12_1_a1
L. V. Fardigola. Transformation operators and modified Sobolev spaces in controllability problems on a half-axis. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 1, pp. 17-47. http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a1/

[1] P. Antosik, J. Mikusiński, R. Sikorski, Theory of Distributions. The Sequential Approach, Elsevier, Amsterdam, 1973 | MR | Zbl

[2] W. D. Bastos, A. Spezamiglio, C. A. Raposo, “On Exact Boundary Controllability for Linearly Coupled Wave Equations”, J. Math. Anal. Appl., 381 (2011), 557–564 | DOI | MR | Zbl

[3] J. Math. Sci., 142 (2007), 2528–2539 | DOI | MR | Zbl

[4] C. Castro, “Exact Controllability of the 1-D Wave Equation from a Moving Interior Point”, ESAIM: Control, Optim. Calc. Var., 19 (2013), 301–316 | DOI | MR | Zbl

[5] M. Dreher, I. Witt, “Edge Sobolev Spaces and Weakly Hyperbolic Equations”, Ann. Mat. Pura Appl., 180 (2002), 451–482 | DOI | MR | Zbl

[6] A. Dutrifoy, S. Schochet, A. J. Majda, “A Simple Justification of the Singular Limit for Equatorial Shallow-Water Dynamics”, Comm. Pure Appl. Math., 62 (2009), 322–333 | DOI | MR | Zbl

[7] J. Eckhardt, “Direct and Inverse Spectral Theory of Singular Left-Defnite Sturm–Liouville Operators”, J. Differ. Eqs., 253 (2012), 604–634 | DOI | MR | Zbl

[8] F. Fanelli, E. Zuazua, “Weak Observability Estimates for 1-D Wave Equations with Rough Coeffcients”, Ann. Inst. H. Poincaré (C) Non Linear Analysis | DOI

[9] L. V. Fardigola, “On Controllability Problems for the Wave Equation on a Half-Plane”, J. Math. Phys., Anal., Geom., 1 (2005), 93–115 | MR | Zbl

[10] L. V. Fardigola, “Controllability Problems for the String Equation on a Half-Axis with a Boundary Control Bounded by a Hard Constant”, SIAM J. Control Optim., 47 (2008), 2179–2199 | DOI | MR | Zbl

[11] L. V. Fardigola, “Neumann Boundary Control Problem for the String Equation on a Half-Axis”, Dopovidi Natsionalnoi Akademii Nauk Ukrainy, 10 (2009), 36–41 (in Ukrainian) | MR | Zbl

[12] L. V. Fardigola, “Controllability Problems for the 1-d Wave Equation on a Half-Axis with the Dirichlet Boundary Control”, ESAIM: Control, Optim. Calc. Var., 18 (2012), 748–773 | DOI | MR | Zbl

[13] L. V. Fardigola, “Controllability Problems for the 1-d Wave Equation on a Half-Axis with the Neumann Boundary Control”, Mathematical Control and Related Fields, 3 (2013), 161–183 | DOI | MR | Zbl

[14] L. V. Fardigola, “Transformation Operators of the Sturm–Liouville Problem in Controllability Problems for the Wave Equation on a Half-Axis”, SIAM J. Control Optim., 51 (2013), 1781–1801 | DOI | MR | Zbl

[15] L. V. Fardigola, “Transformation Operators in Controllability Problems for the Wave Equations with Variable Coefficients on a Half-Axis Controlled by the Diriclet Boundary Condition”, Mathematical Control and Related Fields, 5 (2015), 31–53 | DOI | MR | Zbl

[16] L. V. Fardigola, “Modified Sobolev Spaces in Controllability Problems for the Wave Equation on a Half-Plane”, J. Math. Phys., Anal., Geom., 11 (2015), 18–44 | MR | Zbl

[17] L. V. Fardigola, “Controllability Proplems for the Wave Equation on a Half-Plane and Modified Sobolev Spaces”, Dopovidi Natsionalnoi Akademii Nauk Ukrainy, 9 (2010), 18–24 (in Ukrainian) | MR

[18] Ukr. Math. J., 59 (2007), 1040–1058 | DOI | MR | Zbl

[19] G. Floridia, “Approximate Controllabilty for Nonlinear Degenerate Parabolic Problems with Bilinear Control”, J. Differ. Eqs., 257 (2014), 3382–3422 | DOI | MR | Zbl

[20] V. Georgiev, S. Lucente, G. Ziliotti, “Decay Estimates for Hyperbolic Systems”, Hokkaido Mathematical Journal, 33 (2004), 83–113 | DOI | MR

[21] S. G. Gindikin, L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992 | MR | Zbl

[22] M. Gugat, A. Keimer, G. Leugering, “Optimal Distributed Control of the Wave Equation Subject to State Constraints”, ZAMM Angew. Math. Mech., 89 (2009), 420–444 | DOI | MR | Zbl

[23] M. Gugat, J. Sokolowski, “A Note on the Approximation of Dirichlet Boundary Control Problems for the Wave Equation on Curved Domains”, Appl. Analysis, 92 (2012), 2200–2214 | DOI | MR

[24] M. Jaulent, C. Jean, “One-Dimensional Inverse Schrödinger Scattering Problem with Energy-Dependent Potential. I; II”, Ann. Inst. H. Poincaré Sect. A (N.S.), 25 (1976), 105–137 | MR

[25] M. Jaulent, C. Jean, “Solution of a Schrödinger Inverse Scattering Problem with a Polynomial Spectral Dependence in the Potential”, J. Math. Phys., 23 (1982), 258–266 | DOI | MR | Zbl

[26] F. A. Khalilov, E. Ya. Khruslov, “Matrix Generalisation of the Modified Korteweg-de Vries Equation”, Inverse Problems, 6 (1990), 193–204 | DOI | MR | Zbl

[27] Ukr. Math. J., 64 (2012), 594–615 | DOI | MR | Zbl

[28] K. S. Khalina, “On the Neumann Boundary Controllability for a Non-Homogeneous String on a Half-Axis”, J. Math. Phys., Anal., Geom., 8 (2012), 307–335 | MR | Zbl

[29] K. S. Khalina, “On Dirichlet Boundary Controllability for a Non-Homogeneous String on a Half-Axis”, Dopovidi Natsionalnoi Akademii Nauk Ukrainy, 10 (2012), 24–29 (in Ukrainian) | MR | Zbl

[30] E. Ya. Khruslov, “One-Dimensional Inverse Problems of Electrodynamics”, Zh. Vychisl. Mat. i Mat. Fiz., 25 (1985), 548–561 (in Russian) | MR

[31] Y. Lui, “Some Sufficient Conditions for the Controllability of the Wave Equation with Variable Coefficients”, Acta Appl. Math., 128 (2013), 181–191 | DOI | MR

[32] V. A. Marchenko, Sturm–Liouville Operators and Applications, AMS, Providence, RI, 2011 | MR | Zbl

[33] Y. Privat, E. Trélat, E. Zuazua, “Optimal Location of Controllers for the One-Dimensional Wave Equation”, Ann. Inst. Poincaré Anal Non Linéaire, 30 (2013), 1097–1126 | DOI | MR | Zbl

[34] Ch. Seck, G. Bayili, A. Séne, M. T. Niane, “Contrôlabilité Exacte de l'Équation des Ondes dans des Espaces de Sobolev non Réguliers pour un Ouvert Polygonal”, Afr. Mat., 23 (2012), 1–9 | DOI | MR | Zbl

[35] M. A. Shubov, “Spectral Decomposition Method for Controlled Damped String Reduction of Control Time”, Appl. Analysis, 68:3–8 (1998), 241–259 | DOI | MR | Zbl

[36] G. M. Sklyar, L. V. Fardigola, “The Markov Power Moment Problem in Problems of Controllability and Frequency Extinguishing for the Wave Equation on a Half-Axis”, J. Math. Anal. Appl., 267 (2002), 109–134 | DOI | MR

[37] E. Zerrik, R. Larhrissi, “Regional Target Control of the Wave Equation”, International Journal of Systems Science, 32 (2001), 1233–1242 | DOI | MR | Zbl

[38] X. Zhang, “A Unified Controllability/Observability Theory for Some Stochastic and Deterministic Partial Differential Equations”, Proceedings of the International Congress of Mathematicians (Hyderabad, India, 2010), v. IV, 3008–3034 | MR | Zbl

[39] X. Zhang, Sh. Zheng, “Strichartz Estimates and Local Wellposedness for the Schrödinger Equation with the Twisted Sub-Laplacian”, Proceedings of the Centre for Mathematics Its Applications at the Australian National University, 44, 2010, 233–243 http://works.bepress.com/shijun_zheng/23 | MR | Zbl

[40] E. Zuazua, “Controllability and Observability of Partial Differential Equations: Some Results and Open Problems”, Handbook of Differential Equations: Evolutionary Equations, v. 3, Elsevier Science, 2006 | MR