On the form of dispersive shock waves of the Korteweg–de Vries equation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 1, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the long-time behavior of solutions to the Korteweg–de Vries shock problem can be described as a slowly modulated one-gap solution in the dispersive shock region. The modulus of the elliptic function (i.e., the spectrum of the underlying Schrödinger operator) depends only on the size of the step of the initial data and on the direction, $\frac{x}{t}=$const, along which we determine the asymptotic behavior of the solution. In turn, the phase shift (i.e., the Dirichlet spectrum) in this elliptic function depends also on the scattering data, and is computed explicitly via the Jacobi inversion problem.
@article{JMAG_2016_12_1_a0,
     author = {I. Egorova and Z. Gladka and G. Teschl},
     title = {On the form of dispersive shock waves of the {Korteweg{\textendash}de} {Vries} equation},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--16},
     year = {2016},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a0/}
}
TY  - JOUR
AU  - I. Egorova
AU  - Z. Gladka
AU  - G. Teschl
TI  - On the form of dispersive shock waves of the Korteweg–de Vries equation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 3
EP  - 16
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a0/
LA  - en
ID  - JMAG_2016_12_1_a0
ER  - 
%0 Journal Article
%A I. Egorova
%A Z. Gladka
%A G. Teschl
%T On the form of dispersive shock waves of the Korteweg–de Vries equation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 3-16
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a0/
%G en
%F JMAG_2016_12_1_a0
I. Egorova; Z. Gladka; G. Teschl. On the form of dispersive shock waves of the Korteweg–de Vries equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/JMAG_2016_12_1_a0/

[1] M. J. Ablowitz, D. E. Baldwin, “Interactions and Asymptotics of Dispersive Shock Waves–Korteweg–de Vries Equation”, Phys. Lett. A, 377 (2013), 555–559 | DOI | MR

[2] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Translation of Mathematical Monographs, 79, Amer. Math. Soc., Providence, 1990 | MR | Zbl

[3] R. F. Bikbaev, “Structure of a Shock Waves in the Theory of the Korteweg-de Vries Equation”, Phys. Lett. A, 141 (1989), 289–293 | DOI | MR

[4] R. F. Bikbaev, V. Yu. Novokshenov, “Self-Similar Solutions of the Whitham Equations and KdV Equation with Finite-Gap Boundary Conditions”, Proc. of the III Intern. Workshop (Kiev, 1988), v. 1, 32–35

[5] R. F. Bikbaev, V. Yu. Novokshenov, “Existence and Uniqueness of the Solution of the Whitham Equation”, Asymptotic methods for solving problems in mathematical physics, Akad. Nauk SSSR Ural. Otdel., Bashkir. Nauchn. Tsentr, Ufa, 1989, 81–95 (in Russian) | MR

[6] R. F. Bikbaev, R. A. Sharipov, “The Asymptotic Behavior as $t\to\infty$ of the Solution of the Cauchy Problem for the Korteweg–de Vries Equation in a Class of Potentials with Finite-Gap Behavior as $x\to\pm\infty$”, Theor. Math. Phys., 78 (1989), 244–252 | DOI | MR | Zbl

[7] V. S. Buslaev, V. N. Fomin, “An Inverse Scattering Problem for the One-Dimensional Schrödinger Equationon the Entire Axis”, Vestnik Leningrad. Univ., 17 (1962), 56–64 (in Russian) | MR | Zbl

[8] B. A. Dubrovin, “Theta Functions and Nonlinear Equations”, Russian Math. Surveys, 36 (1981), 11–92 | DOI | MR | Zbl

[9] H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed., The Macmillan Company, New York, 1961 | MR

[10] I. Egorova, Z. Gladka, V. Kotlyarov, G. Teschl, “Long-Time Asymptotics for the Korteweg-de Vries Equation with Steplike Initial Data”, Nonlinearity, 26 (2013), 1839–1864 | DOI | MR | Zbl

[11] I. Egorova, Z. Gladka, T. L. Lange, G. Teschl, “Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials”, J. Math. Phys., Anal., Geom., 11 (2015), 123–158 | Zbl

[12] H. M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, 71, Springer-Verlag, New York, 1980 | DOI | MR | Zbl

[13] B. Fornberg, G. B. Whitham, “A numerical and Theoretical Study of Certain Nonlinear Wave Phenomena”, Phil. Trans. R. Soc. Lond., 289 (1978), 373–404 | DOI | MR | Zbl

[14] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, v. I, Cambridge Studies in Advanced Mathematics, 79, (1+1)-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[15] A. V. Gurevich, L. P. Pitaevskii, “Decay of Initial Discontinuity in the Korteweg-de Vries Equation”, JETP Letters, 17 (1973), 193–195

[16] A. V. Gurevich, L. P. Pitaevskii, “Nonstationary Structure of a Collisionless Shock Wave”, Soviet Phys. JETP, 38 (1974), 291–297

[17] A. R. Its, V. B. Matveev, “Schrödinger Operators with the Finite-Band Spectrum and the $N$-soliton Solutions of the Korteweg-de Vries Equation”, Teoret. Mat. Fiz., 23:1 (1975), 51–68 (in Russian) | MR

[18] V. P. Kotlyarov, A. M. Minakov, “Riemann–Hilbert Problem to the Modified Korteweg-de Vries Equation: Long-Time Dynamics of the Step-like Initial Data”, J. Math. Phys., 51 (2010), 093506 | DOI | MR | Zbl

[19] V. P. Kotlyarov, A. M. Minakov, “Step-Initial Function to the MKdV Equation: Hyper-Elliptic Long-Time Asymptotics of the Solution”, J. Math. Phys., Anal. Geom., 8 (2012), 38–62 | MR | Zbl

[20] S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, Oxford, 2000 | MR | Zbl

[21] J. A. Leach, D. J. Needham, “The Large-Time Development of the Solution to an Initial-Value Problem for the Korteweg-de Vries Equation. II: Initial Data has a Discontinuous Compressive Step”, Mathematika, 60 (2014), 391–414 | DOI | MR | Zbl

[22] V. A. Marchenko, Sturm–Liouville Operators and Applications, rev. ed., Amer. Math. Soc., Providence, 2011 | MR

[23] V. Yu. Novokshenov, “Time Asymptotics for Soliton Equations in Problems with Step Initial Conditions”, J. Math. Sci., 125 (2005), 717–749 | DOI | MR