On the Jost solutions for a class of Schrödinger equations with piecewise constant coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 3, pp. 279-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the new integral representations for the Jost solutions of the one-dimensional Schrödinger equation with the piecewise-constant leading coefficient are obtained. The connections, obtained between the kernel functions of the integral representations and the potential function of the Schrödinger equation, enable to solve the inverse scattering problem on the entire real line.
@article{JMAG_2015_11_3_a4,
     author = {A. A. Nabiev and Kh. R. Mamedov},
     title = {On the {Jost} solutions for a class of {Schr\"odinger} equations with piecewise constant coefficients},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {279--296},
     year = {2015},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_3_a4/}
}
TY  - JOUR
AU  - A. A. Nabiev
AU  - Kh. R. Mamedov
TI  - On the Jost solutions for a class of Schrödinger equations with piecewise constant coefficients
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 279
EP  - 296
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_3_a4/
LA  - en
ID  - JMAG_2015_11_3_a4
ER  - 
%0 Journal Article
%A A. A. Nabiev
%A Kh. R. Mamedov
%T On the Jost solutions for a class of Schrödinger equations with piecewise constant coefficients
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 279-296
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_3_a4/
%G en
%F JMAG_2015_11_3_a4
A. A. Nabiev; Kh. R. Mamedov. On the Jost solutions for a class of Schrödinger equations with piecewise constant coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 3, pp. 279-296. http://geodesic.mathdoc.fr/item/JMAG_2015_11_3_a4/

[1] B. Ya. Levin, “Fourier and Laplace-Type Transformations by means of Solution of Second Order Differential Equation”, Dokl. Akad. Nauk SSSR, 106:2 (1956), 187–190 (Russian) | MR | Zbl

[2] V. A. Marchenko, “Reconstruction of the Potential Energy From the Phases of the Scattered Waves”, Dokl. Akad. Nauk SSSR (Soviet Math. Dokl.), 104 (1955), 695–698 | MR | Zbl

[3] L. D. Faddeev, “The Inverse Problem in the Quantum Theory of Scattering”, Usp. Mat. Nauk, 14 (1959), 57–119 ; J. Math. Phys., 4 (1963), 72–104 | MR | Zbl | MR

[4] B. M. Levitan, “The Inverse Scattering Problem of Quantum Theory”, Math. Notes, 17 (1975), 611–624 | MR | Zbl

[5] K. Chadan, P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer-Verlag, 1977 | MR | Zbl

[6] P. Deift, D. Trubowitz, “Inverse Scattering on the Line”, Comm. Pure Appl. Math., 32 (1979), 121–251 | MR | Zbl

[7] V. A. Marchenko, Sturm–Liouville Operators and Their Applications, Birkhauser, Basel, 1986 | MR

[8] B. M. Levitan, Inverse Sturm–Liouville Problems, VNU Science Press BV, Utrecht, 1987 | MR | Zbl

[9] I. M. Guseinov, R. T. Pashaev, “On an Inverse Problem for a Second-Order Differential Equation”, Usp. Mat. Nauk, 57 (2002), 147–148 | MR | Zbl

[10] Kh. R. Mamedov, “On an Inverse Scattering Problem for a Discontinuous Sturm–Liouville Equation with a Spectral Parameter in the Boundary Condition”, Boundary Value Problems, 2010, 171967, 17 pp. | DOI | MR | Zbl