Bimodal distributions in the space of a non-uniform weight
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 3, pp. 267-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bimodal approximate solutions of the Boltzmann equation for the model of hard spheres, which describe the interaction between the “acceleration-packing” flows, are constructed. Some sufficient conditions for infinitesimality of the mixed error “with weight” between the left-hand and the right-hand sides of the equation are obtained.
@article{JMAG_2015_11_3_a3,
     author = {N. V. Lemesheva},
     title = {Bimodal distributions in the space of a non-uniform weight},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {267--278},
     year = {2015},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_3_a3/}
}
TY  - JOUR
AU  - N. V. Lemesheva
TI  - Bimodal distributions in the space of a non-uniform weight
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 267
EP  - 278
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_3_a3/
LA  - en
ID  - JMAG_2015_11_3_a3
ER  - 
%0 Journal Article
%A N. V. Lemesheva
%T Bimodal distributions in the space of a non-uniform weight
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 267-278
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_3_a3/
%G en
%F JMAG_2015_11_3_a3
N. V. Lemesheva. Bimodal distributions in the space of a non-uniform weight. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 3, pp. 267-278. http://geodesic.mathdoc.fr/item/JMAG_2015_11_3_a3/

[1] A. V. Bobylev, “On the Exact Solutions of the Boltzmann Equation”, Dokl. Akad. Sci. of USSR, 225:6 (1975), 1296–1299 (Russian) | MR | Zbl

[2] T. Carleman, Problemes Mathematiques dans la Theorie Cinetique des Gas, Almqvist and Wiksells, Uppsala, 1957 | MR

[3] C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988 | MR | Zbl

[4] M. H. Ernst, “Exact Solution of the Non-Linear Boltzmann Equation for Maxwell Models”, Phys. Lett. A, 69:6 (1979), 390–392 | MR

[5] O. G. Fridlender, “Local Maxwell Solutions of the Boltzmann Equation”, J. Appl. Math. Mech., 29:5 (1965), 973–977 (Russian)

[6] V. D. Gordevskii, “An Approximate Biflow Solution of the Boltzmann Equation”, Theoret. Math. Phys., 114 (1998), 126–136 (Russian) | MR

[7] V. D. Gordevskyy, “Biflow Distributions with Screw Modes”, Teoret. Math. Phys., 126:2 (2001), 283–300 (Russian) | MR

[8] V. D. Gordevskyy, “On the Non-Stationary Maxwellians”, Math. Meth. Appl. Sci., 27:2 (2004), 231–247 | MR | Zbl

[9] V. D. Gordevskyy, N. V. Andriyasheva, “Interection between “Accelerating-Packing” Flows in a Low-Temperature Gas”, Math. Phys., Anal., Geom., 5:1 (2009), 38–53 | MR

[10] V. D. Gordevskyy, N. V. Lemesheva, “Transitional Regime between the Flows of “Accelerating-Packing” Type”, Bulletin of the V. N. Karazin Kharkiv National University, Ser. Math., Appl. Math., Mech., 931 (2010), 49–58 (Ukrainian)

[11] H. Grad, “Principles of the Kinetic Theory of Gases”, Handbuch der Physik, v. 12, Springer-Verlag, Berlin, 1958, 205–294 | MR

[12] M. N. Kogan, The Dynamics of a Rarefied Gas, Nauka, M., 1967 (Russian)

[13] M. Krook, T. T. Wu, “Formation of Maxwellian Tails”, Phys. Rev. Lett., 36:19 (1977), 1107–1109

[14] H. M. Mott-Smith, “The Solution of the Boltzmann Equation for a Shock Wave”, Phys. Rev., 82:6 (1951), 885–890 | MR

[15] T. E. Tamm, “On the Width of High-Intensity Shock Waves”, Proc. (Trudy) Lebedev Phys. Inst., 29 (1965), 231–241 (Russian)