Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 2, pp. 123-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the direct and inverse scattering problem for the one-dimensional Schrödinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and prescribed decay to its asymptotics. Our results generalize all previous known results and are important for solving the Korteweg–de Vries equation via the inverse scattering transform.
@article{JMAG_2015_11_2_a1,
     author = {I. Egorova and Z. Gladka and T. L. Lange and G. Teschl},
     title = {Inverse {Scattering} {Theory} for {Schr\"odinger} {Operators} with {Steplike} {Potentials}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {123--158},
     year = {2015},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_2_a1/}
}
TY  - JOUR
AU  - I. Egorova
AU  - Z. Gladka
AU  - T. L. Lange
AU  - G. Teschl
TI  - Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 123
EP  - 158
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_2_a1/
LA  - en
ID  - JMAG_2015_11_2_a1
ER  - 
%0 Journal Article
%A I. Egorova
%A Z. Gladka
%A T. L. Lange
%A G. Teschl
%T Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 123-158
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_2_a1/
%G en
%F JMAG_2015_11_2_a1
I. Egorova; Z. Gladka; T. L. Lange; G. Teschl. Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 2, pp. 123-158. http://geodesic.mathdoc.fr/item/JMAG_2015_11_2_a1/

[1] M. J. Ablowitz, D. E. Baldwin, “Interactions and Asymptotics of Dispersive Shock Waves Korteweg–de Vries Equation”, Phys. Lett. A, 377 (2013), 555–559 | DOI

[2] T. Aktosun, “On the Schrödinger Equation with Steplike Potentials”, J. Math. Phys., 40 (1999), 5289–5305 | DOI

[3] T. Aktosun, M. Klaus, “Small Energy Asymptotics for the Schrödinger Equation on the Line”, Inverse Problems, 17 (2001), 619–632 | DOI

[4] Dzh. Bazargan, “The Direct and Inverse Scattering Problems on the Whole Axis for the One-Dimensional Schrödinger Equation with Steplike Potential”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 4 (2008), 7–11 (Russian)

[5] R. F. Bikbaev, “Structure of a Shock Wave in the Theory of the Korteweg–de Vries Equation”, Phys. Lett. A, 141:5–6 (1989), 289–293 | DOI

[6] R. F. Bikbaev, R. A. Sharipov, “The Asymptotic Behavior as $t\to\infty$ of the Solution of the Cauchy Problem for the Korteweg–de Vries Equation in a Class of Potentials with Finite-Gap Behavior as $x\to\pm\infty$”, Theor. Math. Phys., 78:3 (1989), 244–252 | DOI

[7] A. Boutet de Monvel, I. Egorova, G. Teschl, “Inverse Scattering Theory for One-Dimensional Schrödinger Operators with Steplike Finite-Gap Potentials”, J. Analyse Math., 106 (2008), 271–316 | DOI

[8] V. S. Buslaev, V. N. Fomin, “An Inverse Scattering Problem for the One-Dimensional Schrödinger Equation on the Entire Axis”, Vestnik Leningrad. Univ., 17 (1962), 56–64

[9] A. Cohen, “Solutions of the Korteweg–de Vries Equation with Steplike Initial Profile”, Comm. Partial Differ. Eq., 9 (1984), 751–806 | DOI

[10] A. Cohen, T. Kappeler, “Scattering and Inverse Scattering for Steplike Potentials in the Schrödinger Equation”, Indiana Univ. Math. J., 34 (1985), 127–180 | DOI

[11] E. B. Davies, B. Simon, “Scattering Theory for Systems with Different Spatial Asymptotics on the Left and Right”, Comm. Math. Phys., 63 (1978), 277–301 | DOI

[12] P. Deift, E. Trubowitz, “Inverse Scattering on the Line”, Comm. Pure Appl. Math., 32 (1979), 121–251 | DOI

[13] W. Eckhaus, A. Van Harten, The Inverse Scattering Transformation and Solitons: An Introduction, Math. Studies, 50, North-Holland, Amsterdam, 1984

[14] I. Egorova, Z. Gladka, T.-L. Lange, G. Teschl, Inverse Scattering Transform for the Korteweg–de Vries Equation with Steplike Initial Profile, in preparation

[15] I. Egorova, Z. Gladka, V. Kotlyarov, G. Teschl, “Long-Time Asymptotics for the Korteweg–de Vries Equation with Steplike Initial Data”, Nonlinearity, 26 (2013), 1839–1864 | DOI

[16] I. Egorova, K. Grunert, G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. I: Schwartz-type Perturbations”, Nonlinearity, 22 (2009), 1431–1457 | DOI

[17] I. Egorova, E. Kopylova, V. Marchenko, G. Teschl, Dispersion Estimates for One-Dimensional Schrödinger and Klein–Gordon Equations Revisited, arXiv: 1411.0021

[18] I. Egorova, G. Teschl, “A Paley–Wiener Theorem for Periodic Scattering with Applications to the Korteweg–de Vries Equation”, J. Math. Phys., Anal., Geom., 6 (2010), 21–33

[19] I. Egorova, G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. II: Perturbations with Finite Moments”, J. d'Analyse Math., 115 (2011), 71–101 | DOI

[20] L. D. Faddeev, “Properties of the $S$-matrix of the One-Dimensional Schrödinger Equation”, Trudy Mat. Inst. Steklov, 73 (1964), 314–336 (Russian)

[21] N. E. Firsova, “An Inverse Scattering Problem for the Perturbed Hill Operator”, Mat. Zametki, 18 (1975), 831–843

[22] N. E. Firsova, “A Direct and Inverse Scattering Problem for a One-Dimensional Perturbed Hill Operator”, Mat. Sborn. (N.S.), 130(172) (1986), 349–385

[23] N. E. Firsova, “Riemann Surface of a Quasimomentum, and Scattering Theory for the Perturbed Hill Operator”, Mathematical Questions in the Theory of Wave Propagation, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 51, no. 7, 1975, 183–196

[24] N. E. Firsova, “Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Initial Data That are the Sum of a Periodic and a Rapidly Decreasing Function”, Math. USSR-Sb., 63 (1989), 257–265 | DOI

[25] F. Gesztesy, R. Nowell, W. Pötz, “One-Dimensional Scattering Theory for Quantum Systems with Nontrivial Spatial Asymptotics”, Differ. Int. Eqs., 10 (1997), 521–546

[26] K. Grunert, “The Transformation Operator for Schrödinger Operators on Almost Periodic Infinite-Gap Backgrounds”, Differ. Int. Eqs., 250 (2011), 3534–3558 | DOI

[27] K. Grunert, “Scattering Theory for Schrödinger Operators on Steplike, Almost Periodic Infinite-Gap Backgrounds”, Differ. Int. Eqs., 254 (2013), 2556–2586 | DOI

[28] K. Grunert, G. Teschl, “Long-time Asymptotics for the Korteweg–de Vries Equation Via Nonlinear Steepest Descent”, Math. Phys. Anal. Geom., 12 (2009), 287–324 | DOI

[29] I. M. Guseinov, “Continuity of the Coefficient of Reflection of a One-Dimensional Schrödinger Equation”, Differ. Uravn., 21 (1985), 1993–1995 (Russian)

[30] T. Kappeler, “Solution of the Korteveg–de Vries Equation with Steplike Initial Data”, J. Differ. Eqs., 63 (1986), 306–331 | DOI

[31] I. Kay, H. E. Moses, “Reflectionless Transmission Through Dielectrics and Scattering Potentials”, J. Appl. Phys., 27 (1956), 1503–1508 | DOI

[32] E. Ya. Khruslov, “Asymptotics of the Cauchy Problem Solution to the KdV Equation with Steplike Initial Data”, Matem. Sborn., 99 (1976), 261–281

[33] M. Klaus, “Low-Energy Behaviour of the Scattering Matrix for the Schrödinger Equation on the Line”, Inverse Problems, 4 (1988), 505–512 | DOI

[34] V. P. Kotlyarov, A. M. Minakov, “Riemann–Hilbert Problem to the Modified Korteweg–de Vries Equation: Long-time Dynamics of the Steplike Initial Data”, J. Math. Phys., 51 (2010), 093506 | DOI

[35] J. A. Leach, D. J. Needham, “The Targe-time Development of the Solution to an Initial-Value Problem for the Korteweg–de Vries Equation. I: Initial Data Has a Discontinuous Expansive Step”, Nonlinearity, 21 (2008), 2391–2408 | DOI

[36] J. A. Leach, D. J. Needham, “The Targe-time Development of the Solution to an Initial-Value Problem for the Korteweg–de Vries Equation. I: Initial Data Has a Discontinuous Compressive Step”, Mathematika, 60 (2014), 391–414 | DOI

[37] B. M. Levitan, Inverse Sturm–Liouville Problems, Birkhäuser, Basel, 1987

[38] V. A. Marchenko, Inverse Sturm–Liouville Operators and Applications, Naukova Dumka, Kiev, 1977 (Russian); Engl. transl.: Birkhäuser, Basel, 1986; rev. ed., Amer. Math. Soc., Providence, 2011

[39] A. Mikikits-Leitner, G. Teschl, “Trace Formulas for Schrödinger Operators in Connection with Scattering Theory for Finite-Gap Backgrounds”, Spectral Theory and Analysis, Oper. Theory Adv. Appl., 214, eds. J. Janas et al., Birkhäuser, Basel, 2011, 107–124

[40] A. Mikikits-Leitner, G. Teschl, “Long-time Asymptotics of Perturbed Finite-Gap Korteweg–de Vries Solutions”, J. d'Analyse Math., 116 (2012), 163–218 | DOI

[41] N. I. Muskhelishvili, Singular Integral Equations, P. Noordhoff Ltd., Groningen, 1953

[42] G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, 2nd ed., Amer. Math. Soc., Rhode Island, 2014

[43] S. Venakides, “Long Time Asymptotics of the Korteweg–de Vries Equation”, Trans. Amer. Math. Soc., 293 (1986), 411–419 | DOI

[44] V. E. Zaharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Theory of Solitons, The Method of the Inverse Problem, Nauka, M., 1980 (Russian)