@article{JMAG_2015_11_2_a1,
author = {I. Egorova and Z. Gladka and T. L. Lange and G. Teschl},
title = {Inverse {Scattering} {Theory} for {Schr\"odinger} {Operators} with {Steplike} {Potentials}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {123--158},
year = {2015},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_2_a1/}
}
TY - JOUR AU - I. Egorova AU - Z. Gladka AU - T. L. Lange AU - G. Teschl TI - Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2015 SP - 123 EP - 158 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2015_11_2_a1/ LA - en ID - JMAG_2015_11_2_a1 ER -
%0 Journal Article %A I. Egorova %A Z. Gladka %A T. L. Lange %A G. Teschl %T Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2015 %P 123-158 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2015_11_2_a1/ %G en %F JMAG_2015_11_2_a1
I. Egorova; Z. Gladka; T. L. Lange; G. Teschl. Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 2, pp. 123-158. http://geodesic.mathdoc.fr/item/JMAG_2015_11_2_a1/
[1] M. J. Ablowitz, D. E. Baldwin, “Interactions and Asymptotics of Dispersive Shock Waves Korteweg–de Vries Equation”, Phys. Lett. A, 377 (2013), 555–559 | DOI
[2] T. Aktosun, “On the Schrödinger Equation with Steplike Potentials”, J. Math. Phys., 40 (1999), 5289–5305 | DOI
[3] T. Aktosun, M. Klaus, “Small Energy Asymptotics for the Schrödinger Equation on the Line”, Inverse Problems, 17 (2001), 619–632 | DOI
[4] Dzh. Bazargan, “The Direct and Inverse Scattering Problems on the Whole Axis for the One-Dimensional Schrödinger Equation with Steplike Potential”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 4 (2008), 7–11 (Russian)
[5] R. F. Bikbaev, “Structure of a Shock Wave in the Theory of the Korteweg–de Vries Equation”, Phys. Lett. A, 141:5–6 (1989), 289–293 | DOI
[6] R. F. Bikbaev, R. A. Sharipov, “The Asymptotic Behavior as $t\to\infty$ of the Solution of the Cauchy Problem for the Korteweg–de Vries Equation in a Class of Potentials with Finite-Gap Behavior as $x\to\pm\infty$”, Theor. Math. Phys., 78:3 (1989), 244–252 | DOI
[7] A. Boutet de Monvel, I. Egorova, G. Teschl, “Inverse Scattering Theory for One-Dimensional Schrödinger Operators with Steplike Finite-Gap Potentials”, J. Analyse Math., 106 (2008), 271–316 | DOI
[8] V. S. Buslaev, V. N. Fomin, “An Inverse Scattering Problem for the One-Dimensional Schrödinger Equation on the Entire Axis”, Vestnik Leningrad. Univ., 17 (1962), 56–64
[9] A. Cohen, “Solutions of the Korteweg–de Vries Equation with Steplike Initial Profile”, Comm. Partial Differ. Eq., 9 (1984), 751–806 | DOI
[10] A. Cohen, T. Kappeler, “Scattering and Inverse Scattering for Steplike Potentials in the Schrödinger Equation”, Indiana Univ. Math. J., 34 (1985), 127–180 | DOI
[11] E. B. Davies, B. Simon, “Scattering Theory for Systems with Different Spatial Asymptotics on the Left and Right”, Comm. Math. Phys., 63 (1978), 277–301 | DOI
[12] P. Deift, E. Trubowitz, “Inverse Scattering on the Line”, Comm. Pure Appl. Math., 32 (1979), 121–251 | DOI
[13] W. Eckhaus, A. Van Harten, The Inverse Scattering Transformation and Solitons: An Introduction, Math. Studies, 50, North-Holland, Amsterdam, 1984
[14] I. Egorova, Z. Gladka, T.-L. Lange, G. Teschl, Inverse Scattering Transform for the Korteweg–de Vries Equation with Steplike Initial Profile, in preparation
[15] I. Egorova, Z. Gladka, V. Kotlyarov, G. Teschl, “Long-Time Asymptotics for the Korteweg–de Vries Equation with Steplike Initial Data”, Nonlinearity, 26 (2013), 1839–1864 | DOI
[16] I. Egorova, K. Grunert, G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. I: Schwartz-type Perturbations”, Nonlinearity, 22 (2009), 1431–1457 | DOI
[17] I. Egorova, E. Kopylova, V. Marchenko, G. Teschl, Dispersion Estimates for One-Dimensional Schrödinger and Klein–Gordon Equations Revisited, arXiv: 1411.0021
[18] I. Egorova, G. Teschl, “A Paley–Wiener Theorem for Periodic Scattering with Applications to the Korteweg–de Vries Equation”, J. Math. Phys., Anal., Geom., 6 (2010), 21–33
[19] I. Egorova, G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. II: Perturbations with Finite Moments”, J. d'Analyse Math., 115 (2011), 71–101 | DOI
[20] L. D. Faddeev, “Properties of the $S$-matrix of the One-Dimensional Schrödinger Equation”, Trudy Mat. Inst. Steklov, 73 (1964), 314–336 (Russian)
[21] N. E. Firsova, “An Inverse Scattering Problem for the Perturbed Hill Operator”, Mat. Zametki, 18 (1975), 831–843
[22] N. E. Firsova, “A Direct and Inverse Scattering Problem for a One-Dimensional Perturbed Hill Operator”, Mat. Sborn. (N.S.), 130(172) (1986), 349–385
[23] N. E. Firsova, “Riemann Surface of a Quasimomentum, and Scattering Theory for the Perturbed Hill Operator”, Mathematical Questions in the Theory of Wave Propagation, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 51, no. 7, 1975, 183–196
[24] N. E. Firsova, “Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Initial Data That are the Sum of a Periodic and a Rapidly Decreasing Function”, Math. USSR-Sb., 63 (1989), 257–265 | DOI
[25] F. Gesztesy, R. Nowell, W. Pötz, “One-Dimensional Scattering Theory for Quantum Systems with Nontrivial Spatial Asymptotics”, Differ. Int. Eqs., 10 (1997), 521–546
[26] K. Grunert, “The Transformation Operator for Schrödinger Operators on Almost Periodic Infinite-Gap Backgrounds”, Differ. Int. Eqs., 250 (2011), 3534–3558 | DOI
[27] K. Grunert, “Scattering Theory for Schrödinger Operators on Steplike, Almost Periodic Infinite-Gap Backgrounds”, Differ. Int. Eqs., 254 (2013), 2556–2586 | DOI
[28] K. Grunert, G. Teschl, “Long-time Asymptotics for the Korteweg–de Vries Equation Via Nonlinear Steepest Descent”, Math. Phys. Anal. Geom., 12 (2009), 287–324 | DOI
[29] I. M. Guseinov, “Continuity of the Coefficient of Reflection of a One-Dimensional Schrödinger Equation”, Differ. Uravn., 21 (1985), 1993–1995 (Russian)
[30] T. Kappeler, “Solution of the Korteveg–de Vries Equation with Steplike Initial Data”, J. Differ. Eqs., 63 (1986), 306–331 | DOI
[31] I. Kay, H. E. Moses, “Reflectionless Transmission Through Dielectrics and Scattering Potentials”, J. Appl. Phys., 27 (1956), 1503–1508 | DOI
[32] E. Ya. Khruslov, “Asymptotics of the Cauchy Problem Solution to the KdV Equation with Steplike Initial Data”, Matem. Sborn., 99 (1976), 261–281
[33] M. Klaus, “Low-Energy Behaviour of the Scattering Matrix for the Schrödinger Equation on the Line”, Inverse Problems, 4 (1988), 505–512 | DOI
[34] V. P. Kotlyarov, A. M. Minakov, “Riemann–Hilbert Problem to the Modified Korteweg–de Vries Equation: Long-time Dynamics of the Steplike Initial Data”, J. Math. Phys., 51 (2010), 093506 | DOI
[35] J. A. Leach, D. J. Needham, “The Targe-time Development of the Solution to an Initial-Value Problem for the Korteweg–de Vries Equation. I: Initial Data Has a Discontinuous Expansive Step”, Nonlinearity, 21 (2008), 2391–2408 | DOI
[36] J. A. Leach, D. J. Needham, “The Targe-time Development of the Solution to an Initial-Value Problem for the Korteweg–de Vries Equation. I: Initial Data Has a Discontinuous Compressive Step”, Mathematika, 60 (2014), 391–414 | DOI
[37] B. M. Levitan, Inverse Sturm–Liouville Problems, Birkhäuser, Basel, 1987
[38] V. A. Marchenko, Inverse Sturm–Liouville Operators and Applications, Naukova Dumka, Kiev, 1977 (Russian); Engl. transl.: Birkhäuser, Basel, 1986; rev. ed., Amer. Math. Soc., Providence, 2011
[39] A. Mikikits-Leitner, G. Teschl, “Trace Formulas for Schrödinger Operators in Connection with Scattering Theory for Finite-Gap Backgrounds”, Spectral Theory and Analysis, Oper. Theory Adv. Appl., 214, eds. J. Janas et al., Birkhäuser, Basel, 2011, 107–124
[40] A. Mikikits-Leitner, G. Teschl, “Long-time Asymptotics of Perturbed Finite-Gap Korteweg–de Vries Solutions”, J. d'Analyse Math., 116 (2012), 163–218 | DOI
[41] N. I. Muskhelishvili, Singular Integral Equations, P. Noordhoff Ltd., Groningen, 1953
[42] G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, 2nd ed., Amer. Math. Soc., Rhode Island, 2014
[43] S. Venakides, “Long Time Asymptotics of the Korteweg–de Vries Equation”, Trans. Amer. Math. Soc., 293 (1986), 411–419 | DOI
[44] V. E. Zaharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Theory of Solitons, The Method of the Inverse Problem, Nauka, M., 1980 (Russian)