The Singular Limit of the Dissipative Zakharov System
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 1, pp. 75-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dissipative Zakharov system which models the propagation of Langmuir waves in plasmas is considered on the interval $[0,L]$. We are interested in the case of large ion acoustic speed $\lambda$. After the formal limiting transition $\lambda\to\infty$ this system turns into the coupling system of the parabolic and Schrödinger equations. We prove that this limit system has a solution and generates a dissipative dynamical system possessing a global compact attractor. Our main result is the upper semicontinuity of the attractor as $\lambda\to\infty$.
@article{JMAG_2015_11_1_a4,
     author = {A. S. Shcherbina},
     title = {The {Singular} {Limit} of the {Dissipative} {Zakharov} {System}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {75--99},
     year = {2015},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a4/}
}
TY  - JOUR
AU  - A. S. Shcherbina
TI  - The Singular Limit of the Dissipative Zakharov System
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 75
EP  - 99
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a4/
LA  - en
ID  - JMAG_2015_11_1_a4
ER  - 
%0 Journal Article
%A A. S. Shcherbina
%T The Singular Limit of the Dissipative Zakharov System
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 75-99
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a4/
%G en
%F JMAG_2015_11_1_a4
A. S. Shcherbina. The Singular Limit of the Dissipative Zakharov System. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 1, pp. 75-99. http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a4/

[1] P. Biler, “Attractors for the System of Schrödinger and Klein–Gordon Equations with Yukawa Coupling”, SIAM J. Math. Anal., 21:5 (1990), 1190–1212 | DOI | MR | Zbl

[2] I. D. Chueshov, A. S. Shcherbina, “On 2D Zakharov System in a Bounded Domain”, Differential and Integral Equations, 18:7 (2005), 781–812 | MR | Zbl

[3] I. Chueshov, A. Shcherbina, “Semi-Weak Well-Posedness and Attractors for 2D Schroedinger–Boussinesq Equtions”, Evolution Equations and Control Theory, 1 (2012), 57–80 | DOI | MR | Zbl

[4] I. Flahaut, “Attractors for the Dissipative Zakharov System”, Nonlinear Analysis, 16 (1991), 599–633 | DOI | MR | Zbl

[5] O. Goubet, I. Moise, “Attractor for Dissipative Zakharov System”, Nonlinear Analysis, 7 (1998), 823–847 | DOI | MR | Zbl

[6] J. L. Lions, E. Magenes, Problemes aux Limites Non Homogenes et Applications, Dunod, Paris, 1968

[7] A. S. Shcherbina, “Gevrey Regularity of the Global Attractor for the Dissipative Zakharov System”, Dynamical Systems, 18:3 (2003), 201–225 | DOI | MR | Zbl

[8] A. S. Shcherbina, “Dissipative Zakharov System in Two-Dimensional Thin Domain”, Mat. Fiz., Anal., Geom., 12:2 (2005), 230–245 | MR | Zbl

[9] S. H. Schochet, M. I. Weinstein, “The Nonlinear Schrödinger Limit of the Zakharov Equations Governing Langmuir Turbulence”, Communs Math. Phys., 106 (1986), 569–580 | DOI | MR | Zbl

[10] J. Simon, “Compact Sets in the Space $L^p(0,T;B)$”, Annali di Matematica Pura ed Applicata, 148 (1987), 65–96 | MR

[11] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988 | MR | Zbl

[12] V. E. Zakharov, “Collapse of Langmuir Waves”, Sov. Phys. JETP, 35 (1972), 908–912