@article{JMAG_2015_11_1_a3,
author = {Van Quynh Nguyen},
title = {Various {Types} of {Convergence} of {Sequences} of {Subharmonic} {Functions}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {63--74},
year = {2015},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a3/}
}
Van Quynh Nguyen. Various Types of Convergence of Sequences of Subharmonic Functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a3/
[1] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. II, Differential Operators with Constant Coefficients, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983
[2] A. F. Grishin, A. Chouigui, “Various Types of Convergence of Sequences of $\delta$-subharmonic Functions”, Math. Sb., 199 (2008), 27–48 (Russian) | DOI | MR | Zbl
[3] N. S. Landkof, Foundations of Modern Potential Theory, Nauka, M., 1966 (Russian) | MR | Zbl
[4] N. Burbaki, Elements of Mathematics. Integration, Nauka, M., 1977 (Russian) | MR
[5] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR
[6] Nguyen Van Quynh, “About one Property of the Function $||x-y||^{2-m}$”, Visnyk Kharkiv. Univ., Ser. Mat. Prykl. Mat. Mekh., 2013, no. 1062, 50–56 (Russian)