Modified Sobolev Spaces in Controllability Problems for the Wave Equation on a Half-Plane
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 1, pp. 18-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $2$-d wave equation $w_{tt}=\Delta w$, $t\in(0,T)$, on the half-plane $x_1>0$ controlled by the Neumann boundary condition $w_{x_1}(0,x_2,t)=\delta(x_2)u(t)$ is considered in Sobolev spaces, where $T>0$ is a constant and $u\in L^\infty(0,T)$ is a control. This control system is transformed into a control system for the $1$-d wave equation in modified Sobolev spaces introduced and studied in the paper, and they play the main role in the study. The necessary and sufficient conditions of (approximate) $L^\infty$-controllability are obtained for the $1$-d control problem. It is also proved that the $2$-d control system replicates the controllability properties of the $1$-d control system and vise versa. Finally, the necessary and sufficient conditions of (approximate) $L^\infty$-controllability are obtained for the $2$-d control problem.
@article{JMAG_2015_11_1_a1,
     author = {L. V. Fardigola},
     title = {Modified {Sobolev} {Spaces} in {Controllability} {Problems} for the {Wave} {Equation} on a {Half-Plane}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {18--44},
     year = {2015},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a1/}
}
TY  - JOUR
AU  - L. V. Fardigola
TI  - Modified Sobolev Spaces in Controllability Problems for the Wave Equation on a Half-Plane
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 18
EP  - 44
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a1/
LA  - en
ID  - JMAG_2015_11_1_a1
ER  - 
%0 Journal Article
%A L. V. Fardigola
%T Modified Sobolev Spaces in Controllability Problems for the Wave Equation on a Half-Plane
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 18-44
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a1/
%G en
%F JMAG_2015_11_1_a1
L. V. Fardigola. Modified Sobolev Spaces in Controllability Problems for the Wave Equation on a Half-Plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 1, pp. 18-44. http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a1/

[1] P. Antosik, J. Mikusiński, R. Sikorski, Theory of Distributions. The Sequential Approach, Elsevier, Amsterdam, 1973 | MR | Zbl

[2] J. Math. Sci., 142 (2007), 2528–2539 | DOI | MR | Zbl

[3] L. V. Fardigola, “On Controllability Problems for the Wave Equation on a Half-Plane”, J. Math. Phys., Anal., Geom., 1 (2005), 93–115 | MR | Zbl

[4] L. V. Fardigola, “Controllability Problems for the String Equation on a Half-Axis with a Boundary Control Bounded by a Hard Constant”, SIAM J. Control Optim., 47 (2008), 2179–2199 | DOI | MR | Zbl

[5] L. V. Fardigola, “Neumann Boundary Control Problem for the String Equation on a Half-Axis”, Dopovidi Natsionalnoi Akademii Nauk Ukrainy, 2009, no. 10, 36–41 (Ukrainian) | MR | Zbl

[6] L. V. Fardigola, “Controllability Problems for the 1-d Wave Equation on a Half-Axis with the Dirichlet Boundary Control”, ESAIM: Control, Optim. Calc. Var., 18 (2012), 748–773 | DOI | MR | Zbl

[7] L. V. Fardigola, “Transformation Operators of the Sturm–Liouville Problem in Controllability Problems for the Wave Equation on a Half-Axis”, SIAM J. Control Optim., 51 (2013), 1781–1801 | DOI | MR | Zbl

[8] Ukr. Math. J., 59 (2007), 1040–1058 | DOI | MR | Zbl

[9] I. M. Gelfand, G. E. Shilov, Generalized Functions, v. 2, Fismatgiz, M., 1958 (Russian)

[10] S. G. Gindikin, L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach, Philadelphia, 1992 | MR | Zbl

[11] M. Gugat, “Optimal Switching Boundary Control of a String to Rest in Finite Time”, ZAMM Angew. Math. Mech., 88 (2008), 283–305 | DOI | MR | Zbl

[12] M. Gugat, G. Leugering, “$L^\infty$-norm Minimal Control of the Wave Equation: on the Weakness of the Bang-Bang Principle”, ESAIM: Control, Optim. Calc. Var., 14 (2008), 254–283 | DOI | MR | Zbl

[13] M. Gugat, G. Leugering, G. Sklyar, “$L^p$-optimal Boundary Control for the Wave Equation”, SIAM J. Control Optim., 44 (2005), 49–74 | DOI | MR | Zbl

[14] Doklady Mathematics, 69:1 (2004), 33–37 | MR | Zbl

[15] K. S. Khalina, “Boundary Control Problems for the Equation of Vibrating of Non-homogeneous String on a Half-Axis”, Ukr. Mat. Zh., 64:4 (2012), 525–541 | DOI | MR | Zbl

[16] K. S. Khalina, “On the Neumann Boundary Controllability for the Non-homogeneous String on a Half-Axis”, J. Math. Phys., Anal., Geom., 8:4 (2012), 307–335 | MR | Zbl

[17] G. M. Sklyar, L. V. Fardigola, “The Markov Power Moment Problem in Problems of Controllability and Frequency Extinguishing for the Wave Equation on a Half-Axis”, J. Math. Anal. Appl., 276 (2002), 109–134 | DOI | MR | Zbl

[18] J. Vancostenoble, E. Zuazua, “Hardy Inequalities, Observability, and Control for the Wave and Schrödinger Equations with Singular Potentials”, SIAM J. Math. Anal., 41 (2009), 1508–1532 | DOI | MR | Zbl

[19] V. S. Vladimirov, Equations of Mathematical Physics, Mir, M., 1984 | MR