@article{JMAG_2015_11_1_a0,
author = {S. Bezuglyi and O. Karpel and J. Kwiatkowski},
title = {Subdiagrams of {Bratteli} {Diagrams} {Supporting} {Finite} {Invariant} {Measures}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {3--17},
year = {2015},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a0/}
}
TY - JOUR AU - S. Bezuglyi AU - O. Karpel AU - J. Kwiatkowski TI - Subdiagrams of Bratteli Diagrams Supporting Finite Invariant Measures JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2015 SP - 3 EP - 17 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a0/ LA - en ID - JMAG_2015_11_1_a0 ER -
S. Bezuglyi; O. Karpel; J. Kwiatkowski. Subdiagrams of Bratteli Diagrams Supporting Finite Invariant Measures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a0/
[1] S. Bezuglyi, J. Kwiatkowski, K. Medynets, B. Solomyak, “Invariant Measures on Stationary Bratteli Diagrams”, Ergodic Theory Dynam. Syst., 30 (2013), 973–1007 | DOI | MR
[2] S. Bezuglyi, O. Karpel, “Homeomorphic Measures on Stationary Bratteli Diagrams”, J. Funct. Anal., 261 (2011), 3519–3548 | DOI | MR | Zbl
[3] S. Bezuglyi, J. Kwiatkowski, K. Medynets, B. Solomyak, “Finite Rank Bratteli Diagrams: Structure of Invariant Measures”, Trans. Amer. Math. Soc., 365 (2013), 2637–2679 | DOI | MR | Zbl
[4] S. Bezuglyi, J. Kwiatkowski, R. Yassawi, “Perfect Orderings on Finite Rank Bratteli Diagrams”, Canad. J. Math., 66 (2014), 57–101 | DOI | MR | Zbl
[5] S. Bezuglyi, R. Yassawi, Perfect Orderings on General Bratteli Diagrams, Preprint, 2013
[6] F. Durand, “Combinatorics on Bratteli Diagrams and Dynamical Systems”, Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and its Applications, 135, eds. V. Berthé, M. Rigo, Cambridge University Press, 2010, 338–386 | MR
[7] T. Giordano, I. Putnam, C. Skau, “Topological Orbit Equivalence and $C^*$-Crossed Products”, J. Reine Angew. Math., 469 (1995), 51–111 | MR | Zbl
[8] R. H. Herman, I. Putnam, C. Skau, “Ordered {Bratteli} Diagrams, Dimension Groups, and Topological Dynamics”, Int. J. Math., 3:6 (1992), 827–864 | DOI | MR | Zbl
[9] K. Medynets, “Cantor Aperiodic Systems and Bratteli Diagrams”, C. R., Acad. Sci. Paris, Ser. 1, 342 (2006), 43–46 | DOI | MR