Subdiagrams of Bratteli Diagrams Supporting Finite Invariant Measures
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 1, pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study finite measures on Bratteli diagrams invariant with respect to the tail equivalence relation. Amongst the proved results on the finiteness of measure extension, we characterize the vertices of a Bratteli diagram that support an ergodic finite invariant measure.
@article{JMAG_2015_11_1_a0,
     author = {S. Bezuglyi and O. Karpel and J. Kwiatkowski},
     title = {Subdiagrams of {Bratteli} {Diagrams} {Supporting} {Finite} {Invariant} {Measures}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--17},
     year = {2015},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a0/}
}
TY  - JOUR
AU  - S. Bezuglyi
AU  - O. Karpel
AU  - J. Kwiatkowski
TI  - Subdiagrams of Bratteli Diagrams Supporting Finite Invariant Measures
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 3
EP  - 17
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a0/
LA  - en
ID  - JMAG_2015_11_1_a0
ER  - 
%0 Journal Article
%A S. Bezuglyi
%A O. Karpel
%A J. Kwiatkowski
%T Subdiagrams of Bratteli Diagrams Supporting Finite Invariant Measures
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 3-17
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a0/
%G en
%F JMAG_2015_11_1_a0
S. Bezuglyi; O. Karpel; J. Kwiatkowski. Subdiagrams of Bratteli Diagrams Supporting Finite Invariant Measures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/JMAG_2015_11_1_a0/

[1] S. Bezuglyi, J. Kwiatkowski, K. Medynets, B. Solomyak, “Invariant Measures on Stationary Bratteli Diagrams”, Ergodic Theory Dynam. Syst., 30 (2013), 973–1007 | DOI | MR

[2] S. Bezuglyi, O. Karpel, “Homeomorphic Measures on Stationary Bratteli Diagrams”, J. Funct. Anal., 261 (2011), 3519–3548 | DOI | MR | Zbl

[3] S. Bezuglyi, J. Kwiatkowski, K. Medynets, B. Solomyak, “Finite Rank Bratteli Diagrams: Structure of Invariant Measures”, Trans. Amer. Math. Soc., 365 (2013), 2637–2679 | DOI | MR | Zbl

[4] S. Bezuglyi, J. Kwiatkowski, R. Yassawi, “Perfect Orderings on Finite Rank Bratteli Diagrams”, Canad. J. Math., 66 (2014), 57–101 | DOI | MR | Zbl

[5] S. Bezuglyi, R. Yassawi, Perfect Orderings on General Bratteli Diagrams, Preprint, 2013

[6] F. Durand, “Combinatorics on Bratteli Diagrams and Dynamical Systems”, Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and its Applications, 135, eds. V. Berthé, M. Rigo, Cambridge University Press, 2010, 338–386 | MR

[7] T. Giordano, I. Putnam, C. Skau, “Topological Orbit Equivalence and $C^*$-Crossed Products”, J. Reine Angew. Math., 469 (1995), 51–111 | MR | Zbl

[8] R. H. Herman, I. Putnam, C. Skau, “Ordered {Bratteli} Diagrams, Dimension Groups, and Topological Dynamics”, Int. J. Math., 3:6 (1992), 827–864 | DOI | MR | Zbl

[9] K. Medynets, “Cantor Aperiodic Systems and Bratteli Diagrams”, C. R., Acad. Sci. Paris, Ser. 1, 342 (2006), 43–46 | DOI | MR