A New Model of Quantum Dot Light Emitting-Absorbing Devices
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 350-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Motivated by the Jaynes–Cummings (JC) model, we consider here a quantum dot coupled simultaneously to a reservoir of photons and two electric leads (free-fermion reservoirs). This new Jaynes–Cummings-leads (JCL)-type model makes it possible that the fermion current through the dot creates a photon flux, which describes a light-emitting device. The same model also describes a transformation of the photon flux into the current of fermions, i.e., a quantum dot light-absorbing device. The key tool to obtain these results is the abstract Landauer–Büttiker formula.
@article{JMAG_2014_10_3_a5,
     author = {H. Neidhardt and L. Wilhelm and V. A. Zagrebnov},
     title = {A {New} {Model} of {Quantum} {Dot} {Light} {Emitting-Absorbing} {Devices}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {350--385},
     year = {2014},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a5/}
}
TY  - JOUR
AU  - H. Neidhardt
AU  - L. Wilhelm
AU  - V. A. Zagrebnov
TI  - A New Model of Quantum Dot Light Emitting-Absorbing Devices
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 350
EP  - 385
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a5/
LA  - en
ID  - JMAG_2014_10_3_a5
ER  - 
%0 Journal Article
%A H. Neidhardt
%A L. Wilhelm
%A V. A. Zagrebnov
%T A New Model of Quantum Dot Light Emitting-Absorbing Devices
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 350-385
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a5/
%G en
%F JMAG_2014_10_3_a5
H. Neidhardt; L. Wilhelm; V. A. Zagrebnov. A New Model of Quantum Dot Light Emitting-Absorbing Devices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 350-385. http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a5/

[1] W. Aschbacher, V. Jakšić, Y. Pautrat, C.-A. Pillet, “Transport Properties of Quasi-Free Fermions”, J. Math. Phys., 48:3 (2007), 032101–032128 | DOI | MR

[2] S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems III, Recent developments, Lecture notes from the Summer School (Grenoble, June 16–July 4, 2003), Lect. Notes Math., 1882, Springer–Verlag, Berlin, 2006 | MR | Zbl

[3] M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg, “A Quantum Transmitting {S}chrödinger–{P}oisson System”, Rev. Math. Phys., 16:3 (2004), 281–330 | DOI | MR | Zbl

[4] M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, “{G}eneralized Many-Channel Conductance Formula with Application to Small Rings”, Phys. Rev. B, 31:10 (1985), 6207–6215 | DOI

[5] H. D. Cornean, A. Jensen, V. Moldoveanu, “The {L}andauer–{B}üttiker Formula and Resonant Quantum Transport”, Mathematical physics of quantum mechanics, Lecture Notes in Phys., 690, Springer, Berlin, 2006, 45–53 | DOI | MR | Zbl

[6] H. D. Cornean, H. Neidhardt, L. Wilhelm, V. A. Zagrebnov, “{T}he {C}ayley Transform Applied to Non-interacting Quantum Transport”, J. Funct. Anal., 266:3 (2014), 1421–1475 | DOI | MR | Zbl

[7] C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge, 2005

[8] R. Landauer, “{S}patial {V}ariation of {C}urrents and {F}ields {D}ue to {L}ocalized {S}catterers in {M}etallic {C}onduction”, IBM J. Res. Develop., 1:3 (1975), 223–231 | DOI | MR

[9] H. Neidhardt, L. Wilhelm, V. A. Zagrebnov, A New Model for Quantum Dot Light Emitting-Absorbing Devices, WIAS-Preprint 1895; December 17, 2013, arXiv: 1312.4670v1 [math-phys]