@article{JMAG_2014_10_3_a4,
author = {V. P. Kotlyarov and E. A. Moskovchenko},
title = {Matrix {Riemann{\textendash}Hilbert} {Problems} and {Maxwell{\textendash}Bloch} {Equations} without {Spectral} {Broadening}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {328--349},
year = {2014},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a4/}
}
TY - JOUR AU - V. P. Kotlyarov AU - E. A. Moskovchenko TI - Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2014 SP - 328 EP - 349 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a4/ LA - en ID - JMAG_2014_10_3_a4 ER -
%0 Journal Article %A V. P. Kotlyarov %A E. A. Moskovchenko %T Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2014 %P 328-349 %V 10 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a4/ %G en %F JMAG_2014_10_3_a4
V. P. Kotlyarov; E. A. Moskovchenko. Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 328-349. http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a4/
[1] G. L. Lamb Jr., “Propagation of Ultrashort Optical Pulses”, Phys. Lett. A, 25A (1967), 181–182 | DOI
[2] G. L. Lamb Jr., “Analytical Ddescriptions to Ultrashort Optical Pulse Propagation in Resonant Media”, Rev. Mod. Phys., 43 (1971), 99–124 | DOI | MR
[3] G. L. Lamb Jr., “Phase Variation in Coherent-optical-pulse Propagation”, Phys. Rev. Lett., 31 (1973), 196–199 | DOI
[4] G. L. Lamb Jr., “Coherent-Optical-Pulse Propagation as an Inverse Problem”, Phys. Rev. A, 9 (1974), 422–430 | DOI
[5] M. J. Ablowits, D. Kaup, A. C. Newell, “Coherent-Pulse Propagation, a Dispersive, Irreversible Phenomenon”, J. Math. Phys., 15 (1974), 1852–1858 | DOI
[6] I. R. Gabitov, V. E. Zakharov, A. V. Mikhailov, “Maxwell–Bloch Equations and Inverse Scattering Transform Method”, Teor. Mat. Fiz., 63 (1985), 11–31 | DOI | MR
[7] P. Deift, X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. Asymptotics for the MKdV Equation”, Ann. Math., 137:2 (1993), 295–368 | DOI | MR | Zbl
[8] V. P. Kotlyarov, A. A. Minakov, “Step-Initial Function to the MKdV Equation: Hyperelliptic Long-Time Asymptotics of the Solution”, J. Math. Phys., Anal., Geom., 8:1 (2012), 38–62 | MR | Zbl
[9] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl
[10] S. V. Manakov, “Propagation of Ultrshort Optical Pulse in a Two-Level Laser Amplifier”, Zh. Eksp. Teor. Fiz., 83 (1982), 68–83
[11] S. V. Manakov, V. Yu. Novokshenov, “Complete Asymptotic Representation of Electromagnetic Pulse in a Long Two-Level Amplifier”, Teor. Mat. Fiz., 69 (1986), 40–54 | DOI | Zbl
[12] O. M. Kiselev, “Solution of Goursat Problem for Maxwell–Bloch Equations”, Teor. Mat. Fiz., 98 (1994), 29–37 | DOI | MR | Zbl
[13] A. S. Fokas, “A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs”, Proc. R. Soc. London, Ser. A, 453 (1997), 1411–1443 | DOI | MR | Zbl
[14] A. S. Fokas, A. R. Its, “The Linearization of the Initial Boundary Value Problem of the Nonlinear Schrödinger Equation”, SIAM J. Math. Anal., 27 (1996), 738–764 | DOI | MR | Zbl
[15] A. S. Fokas, A. R. Its, “An Initial Boundary Value Problem for the Korteweg de Vries Equation”, Mathematics and Computer in Simulation, 37 (1994), 293–321 | DOI | MR | Zbl
[16] A. S. Fokas, A. R. Its, “An Initial Boundary Value Problem for the sine-Gordon Equation in laboratory coordinates”, Teor. Mat. Fiz., 92 (1992), 387–403 | DOI | MR | Zbl
[17] A. Boutet de Monvel, V. P. Kotlyarov, “Scattering Problem for the Zakharov–Shabat Equations on the Semi-Axis”, Inverse Probl., 16 (2000), 1813–1837 | DOI | MR | Zbl
[18] A. Boutet de Monvel, V. P. Kotlyarov, “Generation of Asymptotic Solitons of the Nonlinear Schrödinger Equation by Boundary Data”, J. Math. Phys., 44 (2003), 3185–3215 | DOI | MR | Zbl
[19] A. Boutet de Monvel, V. Kotlyarov, “Focusing Nonlinear Schrödinger Equation on the Quarter Plane with Time-Periodic Boundary Condition: a Riemann–Hilbert Approach”, Journal of the Institute of Mathematics of Jussieu, 6 (2007), 579–611 | DOI | MR | Zbl
[20] E. A. Moskovchenko, V. P. Kotlyrov, “A New Riemann–Hilbert Problem in a Model of Stimulated Raman Scattering”, J. Phys. A: Math. Gen., 39 (2006), 14591–14610 | DOI | MR | Zbl
[21] L. D. Fadeev, L. A. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987 | MR
[22] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach, CIMS NY University, 1999 | MR
[23] X. Zhou, “The Riemann–Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl
[24] G. Litvinchuk, I. Spitkovskii, Factorization of Measurable Matrix Functions, Birkhäuser-Verlag, Basel, 1987 | MR | Zbl