Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 328-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Maxwell–Bloch equations have been intensively studied by many authors. The main results are based on the inverse scattering transform and the Marchenko integral equations. However this method is not acceptable for mixed problems. In the paper, we develop a method allowing to linearize mixed problems. It is based on simultaneous spectral analysis of both Lax equations and the matrix Riemann–Hilbert problems. We consider the case of infinitely narrow spectral line, i.e., without spectrum broadening. The proposed matrix Riemann–Hilbert problem can be used for studying temporal/spatial asymptotics of the solutions of Maxwell–Bloch equations by using a nonlinear method of steepest descent.
@article{JMAG_2014_10_3_a4,
     author = {V. P. Kotlyarov and E. A. Moskovchenko},
     title = {Matrix {Riemann{\textendash}Hilbert} {Problems} and {Maxwell{\textendash}Bloch} {Equations} without {Spectral} {Broadening}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {328--349},
     year = {2014},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a4/}
}
TY  - JOUR
AU  - V. P. Kotlyarov
AU  - E. A. Moskovchenko
TI  - Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 328
EP  - 349
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a4/
LA  - en
ID  - JMAG_2014_10_3_a4
ER  - 
%0 Journal Article
%A V. P. Kotlyarov
%A E. A. Moskovchenko
%T Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 328-349
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a4/
%G en
%F JMAG_2014_10_3_a4
V. P. Kotlyarov; E. A. Moskovchenko. Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 328-349. http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a4/

[1] G. L. Lamb Jr., “Propagation of Ultrashort Optical Pulses”, Phys. Lett. A, 25A (1967), 181–182 | DOI

[2] G. L. Lamb Jr., “Analytical Ddescriptions to Ultrashort Optical Pulse Propagation in Resonant Media”, Rev. Mod. Phys., 43 (1971), 99–124 | DOI | MR

[3] G. L. Lamb Jr., “Phase Variation in Coherent-optical-pulse Propagation”, Phys. Rev. Lett., 31 (1973), 196–199 | DOI

[4] G. L. Lamb Jr., “Coherent-Optical-Pulse Propagation as an Inverse Problem”, Phys. Rev. A, 9 (1974), 422–430 | DOI

[5] M. J. Ablowits, D. Kaup, A. C. Newell, “Coherent-Pulse Propagation, a Dispersive, Irreversible Phenomenon”, J. Math. Phys., 15 (1974), 1852–1858 | DOI

[6] I. R. Gabitov, V. E. Zakharov, A. V. Mikhailov, “Maxwell–Bloch Equations and Inverse Scattering Transform Method”, Teor. Mat. Fiz., 63 (1985), 11–31 | DOI | MR

[7] P. Deift, X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. Asymptotics for the MKdV Equation”, Ann. Math., 137:2 (1993), 295–368 | DOI | MR | Zbl

[8] V. P. Kotlyarov, A. A. Minakov, “Step-Initial Function to the MKdV Equation: Hyperelliptic Long-Time Asymptotics of the Solution”, J. Math. Phys., Anal., Geom., 8:1 (2012), 38–62 | MR | Zbl

[9] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl

[10] S. V. Manakov, “Propagation of Ultrshort Optical Pulse in a Two-Level Laser Amplifier”, Zh. Eksp. Teor. Fiz., 83 (1982), 68–83

[11] S. V. Manakov, V. Yu. Novokshenov, “Complete Asymptotic Representation of Electromagnetic Pulse in a Long Two-Level Amplifier”, Teor. Mat. Fiz., 69 (1986), 40–54 | DOI | Zbl

[12] O. M. Kiselev, “Solution of Goursat Problem for Maxwell–Bloch Equations”, Teor. Mat. Fiz., 98 (1994), 29–37 | DOI | MR | Zbl

[13] A. S. Fokas, “A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs”, Proc. R. Soc. London, Ser. A, 453 (1997), 1411–1443 | DOI | MR | Zbl

[14] A. S. Fokas, A. R. Its, “The Linearization of the Initial Boundary Value Problem of the Nonlinear Schrödinger Equation”, SIAM J. Math. Anal., 27 (1996), 738–764 | DOI | MR | Zbl

[15] A. S. Fokas, A. R. Its, “An Initial Boundary Value Problem for the Korteweg de Vries Equation”, Mathematics and Computer in Simulation, 37 (1994), 293–321 | DOI | MR | Zbl

[16] A. S. Fokas, A. R. Its, “An Initial Boundary Value Problem for the sine-Gordon Equation in laboratory coordinates”, Teor. Mat. Fiz., 92 (1992), 387–403 | DOI | MR | Zbl

[17] A. Boutet de Monvel, V. P. Kotlyarov, “Scattering Problem for the Zakharov–Shabat Equations on the Semi-Axis”, Inverse Probl., 16 (2000), 1813–1837 | DOI | MR | Zbl

[18] A. Boutet de Monvel, V. P. Kotlyarov, “Generation of Asymptotic Solitons of the Nonlinear Schrödinger Equation by Boundary Data”, J. Math. Phys., 44 (2003), 3185–3215 | DOI | MR | Zbl

[19] A. Boutet de Monvel, V. Kotlyarov, “Focusing Nonlinear Schrödinger Equation on the Quarter Plane with Time-Periodic Boundary Condition: a Riemann–Hilbert Approach”, Journal of the Institute of Mathematics of Jussieu, 6 (2007), 579–611 | DOI | MR | Zbl

[20] E. A. Moskovchenko, V. P. Kotlyrov, “A New Riemann–Hilbert Problem in a Model of Stimulated Raman Scattering”, J. Phys. A: Math. Gen., 39 (2006), 14591–14610 | DOI | MR | Zbl

[21] L. D. Fadeev, L. A. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987 | MR

[22] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach, CIMS NY University, 1999 | MR

[23] X. Zhou, “The Riemann–Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl

[24] G. Litvinchuk, I. Spitkovskii, Factorization of Measurable Matrix Functions, Birkhäuser-Verlag, Basel, 1987 | MR | Zbl